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FOREWORD

This report was prepared by Dr. Harold H. Sogin and Mr, Kamal-Eldin
Hassan on Contract AF 33(616)-98. They were assisted by Mr. Frederick
Salzberg. The work was performed at the Heat Transfer Laboratory, Depart-.
ment of Mechanical Engineering, Illinois Institute of Technology, Chicago,
Illinois. The work was administered by Dr. Max Jakob, Director, and, since
his demise on January 4, 1955, by Mr. Stothe P. Kezios, Acting Director of
the Heat Transfer Laboratory. The contract was issued from the Aeronautical

Research Laboratory, Wright Air Development Center - Mr. Erich Soehngen was

the task scientist for the laboratory, This work is further identified as

Task 70141, "Transient Heat Transfer in Regenerators," under Project 3066,
"Gas Turbine Technology."
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ABSTRACT

This report deals with the thermal design of rotary type regenera-
tive heat exchangers for aircraft gas turbine power plants., Hausen's
regenerator theory is developed in a form directly applicable to the
rotary machine, and deviations from some of the underlying assumptions
are examined. A numerical method to calculate the performance of un-
balanced regenerators is included, but this calculation is not required
for application of the theory. Pressure drop and heat transfer data for
flame trap and wire screen matrices are assembled. The effect of the
regenerator performance on the thermodynamic cycle is discussed. Finally,
a sample calculation is presented.

PUBLICATION REVIEW

This report has been revieved and is approved.

ALDRO LINGARD

Chief, Aeronautical Research Laboratory
Directorate of Research

FOR THE COMMANDER:
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NOMENCLATURE

Note 1: The symbol F 1is used for the unit Fahrenheit degree (temperature
difference). One Rankine degree is equal to one Fahrenheit degree;
hence, the symbol F is also used for a degree on the absolute tem
perature scale, The symbol °F is used for the temperature, that
is, the place on the Fahrenheit temperature scale.

Note 2: The prime ('), the double prime ("), and the triple prime (™) are
used with symbols C, my q, and S to denote that the quantity refers
to a unit of length, a unit of area, or a unit of volume, respectively.

Smol Quantity Unit
A facial area or cross sectional area of flow 2
in duct e
o heat capacity B/F
C’CI’CZ’C3 | constants -
S, specific heat ) B/1b F
D wire diameter in., ft
De equivalent diameter (see Eq. 3-12) £t
£ friction factor (see Eq. 3-16) -—
£ reduced tenperature of the solid at inlet or
outlet plane (see Eq. 2-3)) -—
G mass velocity 1b/sec £l
g acceleration constant £t/ sec?
g a function ‘ -~
h coefficient of heat transfer B/hr £l F
hyseee ’hh enthalpy B/1b
K fraction of circle subtended by ducts -—
K kernel functions (see Eq. 2-39 and -ll1) -—
k thermal conductivity B/hr ft F
L matrix length by
1 drum length ft
n rate of flow 1b/hr
m index -—
N number of divisions in numerical calculation —
N speed of rotation sec™t
Mru Nusselt number, hDe/k —
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Quantity
Prandtl number, /4cp/k

Reynolds number, GDe/(q '/L)
Stanton number, a ¢ h/ch
exponent :

pitch

pressure

heat added during the thermodynamic cycle
rate of heat transfer

gas constant

radius

pressure ratio

area of heat transfer surface
absolute temperature
tenperature of solid

utilization factor (see Eq. 2-20)

fluid velocity in x-direction
volume, relative volume

matrix velocity in y-direction
work of cycle

distance from entrance in direction of
fluid motion

duct width (see Fig. 2-2)

distance solid particle moves in stream
(see Fig. 2-2)

ratio of free flow area to facial area
void fraction

specific weight

increment of £

dummy variable of integration

reduced time (see Eq. 2-17)

compressor efficiency

recuperator effectiveness

regenerator effectiveness

xiii

1n.'1, £t
1b/£t2
B/1b
B/hr
f£t/F
£t
£t
°R
°F
ft/hr
3
ft/hr
B/1b

2

't
ft

ft

-1




Symbol Quantity Unit ,
N turbine efficiency — 5 ‘
e temperature of gas " °F
3 ratio of specific heats - |
A reduced length (see Eq. 2-18) —

/u dynamic viscosity i.:;}:;cf;% "
é reduced distance (see Eq. 2-10) —

X reduced period —_—

e density lb/fi;3

T time hr j
& conduction parameter (see Eq. 2-77) —_ |
g variable angle - 3)
w speed of rotation radians/sec

Subscripts
A state point at alr-side regenerator outlet in thermodynamic ‘
cycle . .
a air side of regenerator
app apparent ¥
B state point at gas-side regenerator outlet in thermodynamic
cycle

b bulk mean

g gas side of regenerator

i inside

m mean

o} entrance; outside

opt optimum

r reduced; radial

s solid i
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Chapter 1: INTRODUCTION

1.1 0se

The idea of regeneration to increase the thermal efficiency of a
thermodynamic cycle is well known. Because some advantages of space
and weight requirements have appeared in favor of the rotating regenera-
tive heat exchanger, many investigators during the past decade have
examined the possibilities of its application to gas turbine power
plants of aircraft. The purpose of this report is to bring the present
theoretical and experimental knowledge to a form which may be useful to
designers interested in that application.

1-2 Scope
The report deals mainly with thermal design of the regenerator.

The influence of the regenerator performance on the over-all thermo-
dynamic cycle is considered. Heat transfer and pressure drop data are
presented. Mechanical design, power plant arrangement, and the still
incompletely solved problem of satisfactorily sealing the fluid streams
are mentioned only insofar as they may have a bearing on the thermal de-
sign or performance calculations.

1-3 Application of the Thermodynamic Regenerator
In the next few sections some characteristics of thermodynamic re-

generation are briefly reviewed by outlining the operation of a gas tur-

bine cycle with and without regeneration and by comparing the performances
of the two cases.

1-3.1 Thermodynamic Cycle of the Simple Gas Turbine Power Plant

The ideal thermodynamic cycle of a simple, open, gas turbine
power plant is shown diagrammatically in the temperature-entropy plane
of Fig, 1-1. The air at the atmospheric condition pl,'l'l is compressed
isentropically to state p2,'r2. Then heat is added at constant pressure
by burning fuel in the air until the gas attains the temperature T3.

The air is then expanded isentropically in a turbine to atmospheric pres-

Manuseript released by the author in June 1955 for publication as a WADC
Technical Report,

WADC TR 55=13 1
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1-3,2  Thermodynamic Ges Turbine Cycle with Regeneration:
A heat exchanger is now introduced to transfer some heat from
the exhaust gases (Point kL) to the high-pressure air flowing from the com-

pressor to the combustion chamber. This reduces the amount of fuel needed
to bring the air to Point 3. A schematic flow diagram of a regenérativa
gas turbine power plant is shown in Fig. 1-2. The numbers and letters re-
fer to the correspondingly labeled points in Fig. 1-1. '

As can be seen in Fig. 1-1, the amount of heat transferred in
the ‘exchanger depends upon the difference between the temperatures Th
and T,. In the case of high pressure ratios (pz/pl), it can happen that
T), < T, so that a heat exchanger would decrease the thermal efficiency,
For this reason regeneration mst not be introduced arbitrarily.

Further, with the addition of the heat exchanger to the power
plant some inherent disadvantages mst be considered. The size and weight
of the plant increase, the pressure losses increaée s and éom compressed
air leaks to the exhaust without passing through the turbine. The heat
exchanger mst do more than just compensate for these deleterious effects
if its addition is to be worth while, '

1-3.3 Evaluation of the Heat Exchanger Effectiveness in the Thermo-
dynamic Cycle
The ideal amount of thermal energy that could be transferred
per unit time from the exhaust gases to the relatively cold air is
0o, l(Th - '1‘2), subscript & referring to the cold air side of the heat
exchanger, m being the rate of flow in 1lb/hr, and cp an average spe-
cific heat in B/1b F. For practical reasons, the actuasl rate of heat

transfer is m,Cp a(TA 2), where T, 1is the actual temperature of
_th’e cvold air leaving the heat exchanger (see Fig. 1-1 and -2), The ratio

of the actual to the ideal rate is called the heat exchanger effective-
ness, Accordingly,

Mex ™ T =T, ' | (1-1)

-
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Schmitt (Ref. 26) calculated the influence of regeneration on
the thermal efficiency of a gas turbine power plant operating as follows:

Air inlet temperature, ty = - S8°F or T, = LO2*R
¥aximm cycle temperature, t, = 1832°F or Ty= 2292°R

Heat exchanger effectiveness, Nex = 0.7
Compressor efficienCy,l Ne = 0.85
Turbine efficiency,: ne = 0482

The results of the calculations are shown graphically in Fig.
1-3. Obviously, regeneration is most practical at low pressure ratios,
as has already been mentioned. If the Heat exchanger effectiveness would
be increased, the maximum thermal efficiency of the cycle would be in-
creased and translated to a lower value of the pressure ratio, as is indi-
cated by the trend of the curves in Fig. 1-3.

One way to increase the heat exchanger effectiveness is to in-
crease its size. However, there is an optimum value of Nex beyond
vwhich a gain in cycle efficiency cannot be made without excessive increases
of size and weight of the power plant., This optimum depends upon the heat

exchanger,

1-Li Some Comparisons of Recuperative and Regenerative Heat Exchangers

In this report the conventional heat exchanger of the shell-and-tube
type is called a "recuperator! and the rotating or Ljungstroem type is
called a "regenerator". The term, "regenerator®, is used here apart from
its meaning in the science of thermodynamics. Where ambiguity may arise
the longer expression, "regenerative heat exchanger", is employed.

1-4.1 Limitation of the Recuperator

It has been shown that the smallest recuperators to meet a spe-
cified performance are obtained by using large numbers of tubes having
small diameter (see, for example, Ref. 28). One of the main reasons is
"that in fine passages the flow becomes laminar, in which case the required

lThe compressor and turbine efficiencies are defined in Chapter L.
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core size diminishes much more reapidly with the Reynolds number than in

the cese of turbulent flow. A practical limit of the tube size is set

by constructional difficulties in separating the two fluids inside the
recuperator core and in providing headers or tube sheets; also, operational
difficulties arise on account of fouling and cleaning.

1=-4.2 Regenerator Core or Matrix
In the regenerator core the constructional difficulties can be

avoided. Well defined passages are unnecessary, for the two fluids are
allowed to occupy the same space at different times. The heat is exchanged
primarily by virtue of the matrix capacity for heat storage rather than

by its nature to conduct heat. Hence, the size of the passages may be con-
siderably reduced, and a compact and relatively light weight core, or matrix,
can be obtained. Since seals within the matrix are unnecessary, any hetero-
geneously packed, permeable solid can be employed. Thus,‘ the matrix may

be constructed from layers of wire gauze or screens, odd shapes of braided
wires and ceramic fibers, as well as various types and shapes of crimped
ribbons and tubular packings, There is some evidence (Ref. 15) indicating
that no appreciable amounts of soot build up inside of the passages of
these matrices, and so the above mentioned operational difficulties mey

be avoided.

1-5 Regenerator Types
The matrix of the regenerator is exposed to the hot fluid for some

time during which its temperature rises. Then it is exposed to the cold
fluid which tekes away the amount of heat that had been stored during the
heating period. This process repeats itself in a cyclic way. In appli-
cations of the steel and liquefaction industries, the regenerators are
built with two matrices which are alternately heated and cooled by switch-
ing the fluids with valves., The importent theories of regenerators have
been developed with those arrangements in view,

It seems that the method most suitable for producing this cyclic
chenge in aircraft power plants is to rotate the matrix so that any part
of the matrix is carried alternately through the hot and cold fluid streams.

WADC TR 55-13 7




This method is similar to that of the rotative type air preheaters used
in modern steam power plants. In this report one of the main regenerator
theories is recast so that it is directly epplicable to the rotating re-
generator; also, other theories are discussed from that standpoint.

Rotating regenerators may be classified according to whether the

fluids flow axially or radially.

1-5.1 Axial or Disk Regenerators
The matrix of the axial regenerator shown in Fig. 1l-l is built

in the shape of a disk. The disk is mounted coaxially in a round cylinder
divided into two ducts. The two fluids flow in opposite sense, the hot
fluid flowing in one duct and the cold fluid in the other. The matrix ro~-
tates about its axis and would usually be turned by a positive external
drive requiring a very small amount of power. Thus, any point in the
matrix passes alternately through the hot and cold streams, carrying the
heat from the one to the other,

1-5.2 Radial or Drum Regenerators

Figure 1-5 represents the drum type regenerator., The matrix is
built in a cylindrical form through which the fluids flow radially, This
drum is mounted coaxially with two round ducts. The inner duct and the
annular space are divided in the axial direction into two parts, one for
the cold fluid and the other for the hot fluid. As in the previous case,
the fluids are in counterflow through fhe mtrix,

1-6 Leakage
One of the practical problemg arising in the mechanical design of a

regenerator for application to the gas turbine power plant is the prevention

of leakage, particularly from the high pressure air to the low pressure
ges. The amounts of leakage play an important role in the thermal design
and thermodynemic performance. Four types of leakage may possibly occur.
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1-6.1 Air-to-Gas Leakage through Clearance Spaces

Leakage from the air side to the gas side occurs through gaps
between the moving matrix and the stationary walls separating the two
fluids, This type of leakage affects the power plant efficiencyl adverse-
ly, because the compressor mmst handle air at a higher rate than the tur-
bine. The leakage can be considerably reduced by the inside seals shown
in Fig. 1-4 and =5,

1-6.2 Air-to-Air. or Gas-to~Gas Leakage
Some air or gas my bypass the matrix through the clearance

space between the rotating matrix and the duct walls, because a pressure
drop exists across the matrix. Hence, parts of either fluid may not pass
through the matrix, and the effectiveness of the regenerator diminishes,
This type of leakage is reduced by means of the outside seals indicated
in Fig. 1-L and -5,

1-6.3 Air-to-Gas Leakage through Matrix

In matrices other than the tubular, or flame trap type, the
air could leak.through the matrix to the exhaust side. This is prevented
by dividing the matrix into sectoral conpartinents and using seals wide
enough to cover at least one compartment at a time,.

1-6.4 Carry-Over Leakage

Finally, the so~-called "ca.rry-over"’ iéalkage or "let down" oc-
curs. The fluid trapped in the individual compartments of the matrix are
carried from one stream to the other by virtue of the matrix rotation.

Because the air has a high density, the carry-over is greater from the air
to the gas side tha.ri from the gas to the air side of the regenerator. The
carry-over is unavoidable; however, it can be kept below a reasonable
limit with slow speeds of rotation.

1-7 Other Design Considerations

In addition to the leskage which is a problem unique to the regenera-
tive heat exchanger, the pressure drop, common to all types of heat ex-
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changers, must be considered. The effects of the pressure drbps on both
the air and ges sides is to decrease the expansion ratio of the turbine,
thus reducing the thermal efficiency of the power plant. To be worth
while, the regenerator must of course uuément the net output considerably
more than would be needed just to btlancg the decrease due to pi‘essure
drop.

The effect of size and weight should be considered from the viewpoint
of the aircraft performance and purpose. As already mentioned, because
of its small passages and finely divided structure, the regenerator appears
to have an advantage of being lighter than a recuperator meeting the same
performance requirements.
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Chapter 2: THEORY OF THE ROTATING REGENERATIVE HEAT EXCHANGER

-

2-1 Assumptions
The assumptions of Hausen's (Ref. 10 and 12) theory are discussed in

the next sections. Then his basic differential equations are developed
from the standpoint of tHeir application to the rotating regenerator.

{
J

2-1.1 Homogenei ty
It is assumed that both the solid and the fluids are continuous,

homogeneous media. This assumption is essential for the formulation of
the differential equations. In practice the matrix may be considered
homogeneous if the material is so finely divided that the sizes of the
voids and individual solid elements are very smmll compared to the. over-
all volume of the matrix.

2-1.2 Steady-State Operation
It is assumed that the matrix has been rotating long enough so

that the temperature of any point in the matrix solid repeats itself peri-

odically. Thus, any transients of starting and stopping are not considered.

At each point in space through which the matrix passes the tem-
perature is independent of the time. This means that as an element in
the matrix reaches a particular position in space, it attains a certain
tenperature affixed to that position.

2-1.3 Uniform Temperatures of the Fluids at Entrances to the Matrix

The temperature of the fluids at the entrances to the matrix is
assumed uniform. Of course, at the exits their temperatures vary from
point to point as will be determined by the theory.

2-1.4 Convection without Conduction

Heat is transferred only by convection at the interface of the
matrix and the fluids. An infinitesimal elemental subdivision of the
matrix material interchanges heat only with the contacting fluid and not
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with neighboring subdivisions; within each infinitesimal subdivision of the
solid the conductivity is infinite in the direction normal to the direction
of fluid flow and zero in the direction parallel to the fluid flow, In

other words, no heat is conducted through any finite part of the solid,4
while the capacity of this part for heat storage is not impaired. Since

the matrix is usually mmde of thin sheets or wires of heat resisting me-
terials which have relatively low conductivity, this assumption is justi-
fiable. Some effects of finite conductivity are discussed in later sections.

As for the fluids; heat is convected by them and is conducted
within them only in regions on the interface of each subdivision. This
assumption is justified by the low conductivity of the fluids,

2-1.5 Constant Coefficients of Heat Transfer

The coefficient of heat transfer h is assumed constant in either
stream. This means that influences of transients in the boundary layers
and of variations in the fluid properties are neglected. This assumption
may be justified by the facts that the transients are of relatively brief
duration and that the thermal properties of the fluids change relatively
little with temperature. In practice, the fluid properties are ewvaluated
at certain mean temperatures (see Section 5-6),

2-1.6 Constant Density
The thermal expansion or contraction of the fluid during heating

or cooling changes the velocity of the fluid as it passes through the
matrix. The influence of these variations are omitted from the theory in
order to simplify the mathematics. Calculations by Saunders and Smoleniec
(Ref. 25) indicate that this assumption is justifiable.

2-2 Derivation of the Differential Equations

Suppose that the matrix has been stretched out so that its motion is
rectilinear. Then the matrix is said to be flat or plane. It is evident
that the findings regarding the flat matrix are directly applicable to the
disk type regenerator; also, it is shown in Appendix A that after minor

modification the results are spplicable to the drum type regenerator,
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With reference to Fig. 2-1, the matrix has the length L in the main
direction of fluid flow., The velocity of the matrix is v, the direction
being normal to that of the fluid stream. The fluid flows with a mass
velocity of m" pounds per hour per square foot of facial or frontal area.
A heat balance is made on an element of volume in space. The dimensions
of the element in the plane of motion are bx by 8y; its depth, normal
to the plane of motionm, is one foot.,

Under steady-state conditions (see Section 2-1,2), thermal energy is
carried in the x-direction by the fluid and in the y-direction by the solid;
also some heat is carried over in the y-direction by the fluid trapped in
the interstices of the matrix element.

2-2.1 Thermal Energy Conveyed by the Fluid
The energy transported per unit time by the fluid into the ele-
ment of space is |

q = m" (5y « 1) S . 6 (2-1)

where © = @(x,y) is the fluid temperature; ¢:p « © 1is the enthalpy of
the fluid referred to zero enthalpy at O°F,

2-2,2 Thermal Energy Conveyed by the Solid Material
Similarly as in Section 2-2.1, the thermml energy transported
per unit time by the solid material into the element of space is

q =7V (8x:1) x (2-2)

fssapp ° p,s
where subscript s refers to the solid, t = t(x,y) is the solid tempera-
ture, and ¢ 8 " t 1is the enthalpy of the material referred to zero en-

thalpy at O°F. Subscript app means that the apparent density should be

employed. Subscript 1 indicates that only one part of the heat conveyed
in the y~-direction is considered.
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2-2.3 Therml Energy in the Carry-Over

A second part of the heat conveyed in the y-direction is the therm-
al energy of the fluid carried over in unit time by the matrix:

=v(fx 1 . e 0 2=
q-y,2 v( . ) ?&PP cP (2-3)
2=2.4 Balance of the Transported Thermal Energy

Applying the First Law of Thermodynamics to the elemental volume
of space and observing that no heat is stored,

d 3(
2 g 4 g1 * 2] 8y =0 o (2-h)
¥x dy /

Substituting for q., qy 15 and 1 2 from Eq. 2-1, -2, and -3 into Eq. 2~
3 »
and simplifying,

m" ¢ ao-!»C"'v +f>@vc --O (2-5)

P ax P 3y

where P is the actual fluid density, p is the void fraction (the ratio
of the volume of voids to the volume of matrix), and

€™ = Ps,app * %p,s (2-6)

2-2.5 Heat Exchange in the Elemental Volume of Space

As the relatively hot matrix "flows" into the space element it
loses heat to the flowing fluid by convection. The rate of change of
the enthalpy of the mtrix mterial is equal to the rate of heat trans-

ferred by convection in the same space element. Accordingly,
%(v-Sx-C"‘t)&y:-hS"' (t - ) & &y (2-7)

The minus sign appears because t decreases in the positive y-direction.
The same equation would be obtained if the matrix were considered to be
cold and gaining heat from the fluid. Simplifying,
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= 3
(7]
3

(0 - t) (2-8)

3 _
W e

Elimdnating 9t/dy from Eq. 2-5 and -8 and placing =" = ue@ ,

3 , v 09 _ hS™ - : -
&"ﬁ.-b_y'mcp(t ®) (2-9)

It may be noted that u is the effective axial velocity of the fluid, that
is, the distance a fluid particle moves per unit time in the x-direction
through the matrix interstices. Equations 2-8 and -9 are the basi¢ dif-
ferential equations governing the temperatures of the solid and fluids in
the flat regenerﬁtor. In the next section they are brought to a more con-

venient form.

2-2,6 The Differential Equations in Dimensionless Space Coordinates

Introducing
_hsw
&= X (2-10)
and
-ps™ y_x -
= ~cw F-3 (2-11)

and substituting for x and y in terms of § and N s Eq. 2-8 and -9

becoms

B_o_y (2-12)

on
00
3 (2-13)

where t and © are now regarded as functions of £ and N e

Equations 2-12 and -13 describe the heat exchange in one of the re-
generator streams. Therefore, the problem of the heat exchange in the

regenerator is solved using two sets of these equations. In both streams,
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x is positive in the direction of the flow and y 4is positive in the di-
rection of the matrix motion.

2-3 Boundary Conditions

Only counterflow regenerators will be considered.1 The two streams
will be called the ®"cold air" and the "hot gas", and symbols denoting
quantities on corresponding sides 6f the regenerator will be distinguilshed
by subscripts a and g, reépectively. Thus, a plane normal to the flow
direction of the cold air is at a distance X, from the cold-air entrance.

- The same plane would be at a distance xé from the hot-gas entrance, so

that
x, = L-x, (2-1L)
In order to formlate the boundary conditions the "actual” regenerator

will be replaced by an "ideal" regenerator. It will be convenient to con-
sider the matrix of fine tubular construction; however, substantially the

same analysis would apply to gauze type mmtrices.

2-3.1 Difficulty of Formlating Boundary Conditions for the Actual
Regenerator
As the solid particles in a plane normal to the direction of the
matrix motion enter one of the fluid streams, a point at x #0 is not
immediately affected because the fluid does not reach that point until
the time xi/u has elapsed; meanwhile the point moves to yi.=v'-(xi/u).
Also, at the farther side of the fluid stream, at x = O, there is a dis-
tance in the y-direction, namely, v « (L/u), such that fluid particles
entering cannot reach all parts of the passages before they are blocked

or sealed. Summarizing, in the actual regenerator the duration of time

a point in the matrix is affectéd by a given stream depends upon its dis-
tance x from the entrance of the fluid. A point of the matrix at

x = 0 spends the full heating or cooling period in the fluid stresm
vhereas a point at x =1L stays a shorter time. These variable exposure

1H’uusen (Ref. 10) =ls0 considered perallel-flow regenerators. He
showed that their maximum effectiveness is limited to a value of 0,5.
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times lead to mathematical boundary conditions which are difficult to
handle. Therefore, an ideal regenerator is defined which closely approxi-
mates the actual regenerator for all practical purposes and simplifies

the mathematics.

2=3.2 Ideal Regenerator .
An ideal flat regenerator is shown diagrammatically in Fig. 2-2.

The walls dividing the two fluid streams are imagined to be permeable,
in such a way that they ellow the matrix to pass through them but keep
the fluids out. Further, the walls of each channel are slanted at the

angle tan™t (v/u) from the mein direction of the fluid flow. Hence, the

fluid particles move parallel to the walls. As a consequence of this
arrangement, any point in the matrix enters the stream at the moment the
fluid arrives; the point is immediately affected by the first particle
of fluid entering at the near side of the stream. At the far side, the
fluid particles leave the matrix, without being replaced by other fluid
particles. Thus, in the ideal regenerator, carry-over from one stream
to the other is avoided.

With reference to Fig. 2-2,

y* =y - % x (2-15)

and the distance between the permeable walls is

F=1-3Ix (2-16)

Hence, the distances y* are measured from an axis which is oblique to
the direction of flow,‘and the distance Y* is uniform, so that all
points of the matrix in the ideal regenerator have the same length of
effective path in a given stream.

It my be noted that upon eliminating y from Eq. 2-11 and -15,
hS™ &
N =Em Y (2-17)
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and that the differential equations in dimensionless space coordinates,
namely, Eq. 2-12 and -13, are unaltered.

2-~3.3 Dimensionless Lengths
To formulate the boundary conditions of the ideal regenerator,

the extreme values of g and ! will be needed. The value of £ for
X =1L will be denoted by A and will be called the reduced length. Thus,

_hsm
T nflc
P

L (2-18)

The value of vy for y* = Y® will be denoted by T eand will be called
the reduced period.1 Thus,

.. hS"™m _ %
= ;Eﬁr‘y (2-19)
Jt is of some interest that the ratio
mt'c, 2
1\ S 1 -
Us b= o (2-20)

vhich is called the utilization factor, is independent of h and S".

It should be noted that values of A\ and T on the air side
of the regenerator are generally not equal to corresponding values on the
gas side. Since x is measured from the plane at which the fluid enters
the matrix and since &/A = x/L, the quantities g, end gg corre-
sponding to the same plane are related by the equation,

-{;5 + JEE.= 1 : (2-21)

1The reason for this bizarre name for a distance is that the theory
was originally developed for non-rotary regenerators which operate in a
quasi-stationary way, and the term "period"” as well as the symbol T
are retained to avoid any confusion in case the reader consults the
literature. ’
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Further,

h
Ng_Tapia g (2-22)

and

R (2-23)
= o -23
Y* ho.

Eliminating the ratio tha from Eq. 2-22 and ~23,

A, T, =mc T
—E&_-_£2. __BJ_% ' (2-2L4)

Aa. Ta n; cap’g Yg ,

For many practical purposes it may be assumed that cp‘.’L = cp,g' Moreover,
in the application of the theory to an aircraft gas turbine power plant,
if the leakage from one stream to the other is very small compared with
the total rate of flow it may also be assumed that n: Y: = mE Y;, by con-
tinuity. Under these circumstences the ratio in the parentheses of Eq.

2-2l, takes the value 1, and

A’-E = —IE-& or U =U_~ (2-25)
o Ta « &
This is & useful relationship in dealing with regenerators which have un-

equel reduced lengths and reduced periods, that is, so~called unbelanced
regenerators.

2-3.4 Boundary Conditions of the Ideal Regenerator

In accordance with the assumption in Section 2-1.3 that the tem-
peratures of the fluids at the entrance planes are uniform,

e, (0, 'la) = (2-26)

Ga,o
and
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where both oa,o and Og,o are constants,

Since nothing happens to the ideal matrix as it passes through
the permeable well, the temperature at a point in the solid leaving one
" stream is equal to the temperature at that point entering the second

* *
stream, Accordingly, considering that tg = tg(xg,yg) and ta:=ta(xa,ya),

and focusing our attention on a plane of the matrix which leaves the cold

air and on another which enters the hot gas, we my write -
*
tg(xg,o) = t,(L - xg,Ya) (2-28)

Introducing the reduced lengths and reduced periods and considering now
that t = tg( E

. Vg) and t, = ta( Egs Wa)’ we may transform Eq. 2-28
to ’

g’

- - =& -
by Eps0) = %, <Aa [ Ag:l’ na> | (2-29)

Similarly, focusing our attention on planes which leave the hot gas and
enter the cold air, ‘

ta( Ea’o) = tg (Ag [ - 'Ta']: Tig) (2-30)

The problem of the ideal regenerator is now mathematicélly
formulated. A solution is required to satisfy two sets of the linear
partial differential Eq. 2-12 and -13, one set for each fluid, aﬁﬁ to
satisfy the boundary conditions, namely, Eq. 2-26, =27, =29, and ~-30.

2-3.5 Comparison of the Ideal and Actual Regenerators

The difference lies in the slanted, permeable wall, which is
impossible to construct in the actual regenerator. This wall has two
features:

First, it has the ability to separate the fluid from the solid,
allowing the solid to pass through it. The effect, as already mentioned,
is to eliminate the carry-over losses discussed in Section 1-6.L. In

WADC TR 55-13 23

[V —




practice this type of leakage may be kept low by employing low speeds of
rotation, say, 30 to LO revolutions per minute. This places a limit on
the matrix velocity v.

Second, the permeable wall is slanted at the angle tgn-l (v/u)
with respect to the direction of fluid flow, while the wall of the actual
regenerator is straight. As (v/u) -= O, the shape of the ideal regenera-
tor approaches the shape of the actual one. Since practical values of
v/u would usuelly be quite small, the approximation is good. It may be
noted that the same approximation wouild be.ane by omitting the second
term in the parentheses of Eq. 2-11, for this term arose by the admittance
of a cerry-over of thermal.energy from one elerental volume of space to
another (Section 2-2.3).1

2=-3.6 Single-Blow Problem
An allied problem, which is of a simpler nature than the one

treated above, deals with the "single-blow". Its importance here lies
in the fact that its solution may be erployed to solve the regenerator
problem, Also, it has been employed in several experimental studies to
determine the coefficients of heat transfer. See, for example, Ref., 12,
25, and 26,

In the single-blow, a stationary matrix having an arbitrary
initial temperature distribution is suddenly subjected to a continuous
blow of fluid entering with constant temperature. Mhthematically, the
problem is to solve one set of the basic differential equations, namely,
Eq. 2-12 and -13, with one boundery of the form of Eq. 2~-26 or =27 and
the condition that

t(&£,0) = £(€) ' (2-31)

where f(E) is a prescribed function. The solution is comprised of ex-
pressions for t( &, q) and ©(&,n). Solutions are presented in

The next several sections deal with the mathematical soiution of the
regenerator problem. The reader who is interested mainly in the results

and their application mey proceed without loss of continuity to Section 2-8.
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Ref. 2, 22, and 27; the last two references deal with the case that
£f(& ) = constant. '

2-}; Solutions of the Regenerator Problem

Hausen (Ref. 10) developed a purely analytical solution. The mein
results, presented in Section 2-8, are directly applicable to the balanced
regenerator, that is, a regenerator in which 'Aa,= j\g and 'ﬁa = “g'
Nusselt (Ref. 23), working independently, brought the mathematical problem

to a form requiring the solution of a set o? integral equations., Numeri-

cal methods, one of which is based on Nusselt's treatment and is presented
in Section 2-5, have since shown that the results for the balanced re-
generator may be applied to predict the over-all performance of an un-
balanced regenerator, provided a proper averaging procedure is employed.
Although quite time consuming, the numerical methods heve the advantages
of being applicable to both balanced and unbalanced regenerators and of
providing the transient histories and the steady-state terperature distri-
butions in both the matrix and the fluids. Even when the temperature
distributions of a balanced regenerator are required, a numerical solution
appears preferable to direct substitution into the mathematical series

comprising the results of Hausen's analytical solution.

Hausen (Ref. 11) devised the first numerical method, the so-called
heat-pole method. He divided the matrix into a number of strips or heat
poles along the x-axis. Since no conduction occurred, he could treat
each pole as though it were an individual bed in the single-blow theory,

for which analytical solutions of a closed form were already available.

Saunders and Smoleniec (Ref. 25) solved.the single-blow problem
numerically by converting the differential equations to difference equa-
tions and integrating }n a stepwise manner, Starting with a regenerator
mtrix of uniform temperature, allowing it to cycle successively through
the hot and cold fluids, and observing the point in the calculations
where the temperatures repeated themselves, they detérmined the steady-
state distributions and, consequently, the regenerator performance. At
the same time they could predict the number of revolutions the matrix
turned before coming to steady-staté conditions. In any practical case
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where

w oo - iJ, (24 =
-e Kp=(gg-e) D 1 ( VI E ﬂ) (2-39)
\ﬁ(‘( €, — ¢ )

K ( Egq-€)

In the same way, Eq. 2-35 becomes

1-£, A‘[l--f\-ﬂ = e"‘ “g[l‘fg( Eg))] |

:,

+'_/; Kg( g™ &) [1-1'8(&)] de (2-4o) i

where. | ;
" - 4, (2 (g, - e) |
K(&-e)--e g (E ¢) “g' 1( -\/Eﬂ Eﬂ ° ) (2-11) ‘

Vgl &g =€)

Equations 2-38 and -0 are two simultaneous integral equations
giving the temperature distributions in the matrix planes at the entry to
the two fluids, namely, fa and fgo It will be seen that when these
distributions are known, the effectiveness can readily be found. To
carry out the calculations,; the integrals ere to be evaluated by means of
Simpson's rule or its equivalent, as shown below.

2-5.2 . Review of Simpson's Rule for Integration

To evaluate a definite integral j; t)Lg(e) de by Simpson's rule,
the interval (a,b) on the e-axis is divided into an even number of parts,
each of width A . Approximating the function g(e ) with parabolic seg-
ments through every group of three successive points, one may write the
following equation with an error of the order Az.

b .
jg(e)de =%—[g(a)+hg(a+A)+2g(a+2A)+hg(a+3A)
: +2g(a + 4A) + ... +2g(b-24)

+lgb-A) + g(b)] | (2-L2)1

lThe parentheses in this equation and in all renaining equations of
this section enclose the functional arguments,
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In particular, if the number of intervals is 2,

b
jg(e) de =%— ga) + Lg "—%—1-’+g(b)] (2-L3)

2-5.3 Application of Simpson's Rule to the Solution of the Integral
Equations |
In applying Simpson's rule to solve Eq. 2-38 and -LO, each of
the reduced lengths Aa and Ag is divided into N equal parts of
length A. and Ag’ respectively, as shown in Fig. 2-3. It is unneces-
sary that N be an even number., Regarding Eq. 2-38, consider that
Eq =1 4O, where m=0,1, 2, ..., N. Then

L

e pA -gh=t,@a,) e
me Aa
+f K,(m+ A - €) « £ (e) de (2-Lk)
0

With the understanding that a symbol of the type fg n will henceforth
y
replace the symbol of the type fg(n s A g) s Eq. 2-Ll takes the simpler

form,

.-“‘ .o,
feNem™ fa,m' e +[ Kg(mep,-¢€) - £f,(g) de (2-145)
5"

This equation is typical of N + 1 equations which will be written by
placing m=0,1,2,..., and N. Equation 2-40 could be written in a
similar, typical manner to fepresent another set of N + 1 equations,
Employing Simpson's rule or its equivalent to eveluate the integrals, one
obtains a total of 2N + 2 1linear algebraic equations in which the un-

knowns are fg’m and f"m for n = 0,1,2,000,N0

Since Simpson's rule can be used only if m is an even number,
equivalent expressions are needed for the cases in which m is odd. In
the next four sections, the integrals aré.develc)ped according to whether
m iseven, m=1l, m= 3, and m 1is an odd number greater than 3.
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2-5.4 Integration for m Even
In this case Simpson's rule is directly applicable and the inte-
gral in Eq. 2-45 becomes '

J

0

me A

TKm A, -e) - (e de

;_93_3_[1(&(-,, * £y =0) ¢ £,(0) + UK (me B, - 4,) ¢ £,(0,)
2K (me A =2A,) * 5,(2A,) * ...
+ K e A, -[m-2] p,) « £,([=-2] p,)
+ uxa(m-'aa-[m-lj B,) + £,((==1]- a,)
+K(m A, -m*p) £ (m- Aa)} (2-L6)

The symbol K, n MY replace the lengthier notation Ka(n . Aa)’ a simi-
]
lar change of notation having already been made in regard to f. Then

me A, .
] K,(m* Q- e) fa(e) de
0
Dy

=T{Ka,m ’ fo.,O + ,"xa,m-kl : fa.,l + 2Ka,1g-2 ’ fa,2

+ LK o f +...+2Ka,2°f

a,m- 3 a,3 a,m-2

+ Kyt Tame1 *Fa0 f.,m} (2-L7)

1

In the special case that m = O, the integral is zero.

2-5.5 Integration for m=1

In this case Iliffe assumed that the temperature distribution
can be fepresented in the range 0 = ¢ « BA‘ by a polynomial of the
third order:

f,(e) =85+ ae +a2e2+n3e3 (2-L8)
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Substituting e=10, A, ZA‘, and BAQ, the values of 89 85 8y 3
and 8, can be determined in terms of f"o, fe,l’ fa’z, and f"j. Then :3
employing Eq. 2-L8 to determine fa,l /2 =£,(08,/2),

ty1j2 = [Sf 152, ) - 58, 5+ _fa,3:l (2-L9)

Thus, the interval (O, Aa) has been subdivided into two equal parts so
that Eq. 2-43 is applicable. The result is

AW
f Ky(By - &) + £,(e) de
0]
= K e f + 1 K :
T 1,1  Ta,0 T T Ta,1/2 |
) I:Sfa,0+15fa,l-fa,2 +fa,3] i

+E, o fa’l} (2-50)

2-5.6 Integration for m= 3.
Iliffe assumed that the entire integrand could be represented

by another third-order polynomial:

244 & (2-51)

K,Bhg-€) » f(e) =A +Me +A5¢ 3

Again substituting e =0, o 2 A , and 3A s the values of AO, A.l,
A2, and A3 can be determned in terms of K, 2,3 fa,o’ Ka,2 . fa,l’

Ka,l . fa’z, and Ka, 0" a,3' After replacing the coefficients in Eq. 2-51
with their newly derived values and integrating with respect to e

from 0 to 3Aa’

In,
[ K,(30,- €) ° fa(e) de
0

=3 . . . .
] All:KaL,B ftaL,O"‘BKe,Z o.,l+3K 1 faL,2"‘Ko.,0 fa,3] (2-52)
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2-5.7 Integration for m 0dd and Greater than 3
In this case Iliffe employed the relationship

me A, 3en, ne A,
f gle) de =‘] gle ) de +/ g(e ) de (2-53)
0 0 B*Aa

Thus, he could use the results from the case that m=3 in

conjunction with the result from the case that m is even. With due re-
gard for the actual meaning of the index m in the present case, for
exanple, observing that m-3 is even, the final result is
m. Aa
Ka(m-Aa- &) -fa(e) de
0

2 £ . +e £

- 3 . . .
= Aa{EKa,m fa,0+3' Kaa.,m-l 2,1 %3 KtaL_,m-Z 8,2

3,1 l , 2 ,
+[B'+'3- Ka,n-B'fa,3+§ Ka,m-h fa,h+-3' Ka’m_s fa,5+ ese

2

, L 1 )
+5K 5 fom-2*3 Ke,1* fa,m-1*3 Kay0° fa,mj (2-5L)

2-5.8 Final Form of the Simultaneous Linear Algebraic Equations

Applying the results of Sections 2-5.L through 2-5.7 successively

in accordance- with Eq. 2-L5 for m = 0,1,2,...,N, one obtains the N +1
equations shown in Fig. 2-4; they are referred to as Eq. 2-55. As already
suggested, the other set of N + 1 equations my be obtained by replacing
fg,,N-m" Ag» Ka,m’ fa,m’ and [, by 1- ft,N-m’ AP Kg,m’ 1- fg,m"
and ][g, respectively. These equations are shown in Fig. 2=5 and are
referred to as Eq. 2-56,

2-5.9 General Remarks regarding the Calculation Procedure

The sets of Eq. 2-55 and =56 are 2N + 2 1linear algebraic eque-
tions in fg,m and f&,m for m=0,1,2,...,N. The solution, therefore,
represents the temperature distributions in the matrix at the planes of
entry to the gas and the air.
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The functions K defined by Eq. 2-39 and =41 always take posi-
tive values and can be evaluated by means of tables of Bessel functions.
For values of 24/ T(& - e) greater than L, the following formila?
can be used to determine Jl(ix)a

X x2 13 xh
_ 0.277576L _

TX

x .
Jy(ix) = _.i_e_..-[l _ 0,375 _ 0.1171875 _ 0,10253906 _ 0.1LI1956

(2-57)

Once the distributions of fa and fg are established the re-
generator effectiveness can be calculated as shown in Section 2-7. Also,
the temperature at any point in the mmtrix can be determined by means of
Eq. 2-33 and -35. Further, the temperature distributions of the fluids
can be calculated by means of Eq. 2-12.

2-6 Numerical Calculation of Balanced Regenerators
In the case that Aa= Ag= A and T,=N,=T = symmetry
occurs in the two sets of algebraic equations of Section 2-5.8 which

mekes them identical, namely,

f 1-f (2-58)

g,N-xn= a,m

In this case it is sufficient to solve just one set of equations and to
employ Eq. 2-58.

2-7 Regenerator Effectiveness obtained from Numerical Calculations

In this section the effectiveness is calculated from the viewpoint
of the heat capacity of the matrix. The matrix enters the cold stream
with a certain enthalpy and leaves it to enter the hot stream with a lower

enthalpy. In steady conditions, the difference between these two enthalpies

1See, for exanmple, E. Jahnke and F. Emle, Tables of Functions with

Formlae and Curves, Dover Publications, New York, 19L5; p. 227.

2Thid., pp. 137-136.
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is the actual amount of heat energy transferred from the matrix to the cold
stream; an equal amount of energy is picked up by the matrix as it tra-

verses the hot stream.

The ideal amount of heat energy transferred is the quantity that the
cold air would pick up if its temperature had been raised to that of the
incoming hot gas. The ratio of the actual total amount to the ideal total
amount is the regenerator effectiveness. The following calculations are

mede with the above procedure in mind,

For a unit width of matrix, the rate at which heat is carried by the
matrix as it moves into the cold stream is

L
!
e = | vome,(g) ax
€50 &,y0 0
mgc a Mg |
= vom . =k / fa( £a) dEa ' (2-59)
a
0

Similarly, the rate at which heat is carried by the matrix as it moves
out of the cold air is

q! m'"c Ag
- m -~
g =" - kR / £,( &) A&, (2-60)
€50 8,40 g 0
The ideal rate of heat transfer would be obtained if the temperature
of the cold air would change from Oa o to © 0" Accordingly,
3*

> gs
4y '
—————— T m" C Y 2"'
Og,o'ga,o a p,a ( 61)

Hence, the regenerator effectiveness is

% - 9
lheg = =

*
1 m" ¢ Y

A
1 RPN Ag ,
= £(g,)dg, ~— -5 P28 & £(E)dE_(2-62)
)L & ~a a Ng mv ¢ o g g g

0 a p,a "av0
The integrals in Eq. 2-62 are conveniently evaluated in terms of the

numerical values of fa. and :t‘g obtained from the solution outlined in
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Section 2-5. Applying Simpson's rule for the case that the number of
intervals N is even,

A
0
v 2ty o+ Uty o+ 8] (2-63)

And if N is odd, the technique of Section 2-5.7 may be employed with-
the result that

A
/ £(&) de =%—[B-f +27f +-azf + +bi’b+2f5
0

+ b.f6 + 2f7 4+ ese + 2fN-2

+lty o+ 8] (2-6L)

2-8 Results of the Theory of the Balanced Regenerators
The results of Hausen's analytical solutian or of the corresponding

numerical calculations are most conveniently represented graphically.

Figures 2-6 and -7 give the effectiveness of balanced regenerators
for values of A and X in the range of practical interest. The
curves were drawn from data given by Johnson (Ref. 15). In Fig. 2-8 curves
of constant utilization factor are presented. The graphs illustrate the
following properties of regenérators:

(1) PFor a given effectiveness there is 8 minimm reduced length A
below which that effectiveness cannot be attained.

(2) An increase in the reduced length A (or actual length L) is
more effective in the case of a regenerator with a small value of A
than one with a large value of A .

(3) For a given value of A , the effectiveness decreases as Tl
increases, This effect is quite large for small values of A .
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-9 Unbalanced . Regenerators
The results of Section 2-8 can be used to obtain the effectiveness
of unbalanced fegenerators, at least in the range of practical applica-

tion. A method of procedure suggested by Saunders and Smoleniec (Ref. 25),
namely, to employ a systém of arithmetic averages, has been found to yield
results which deviate from the exact values. Two methods of procedure,
based on harmonic averages, have been found to give virtually equal values
and better accuracy when compared with results determined by the much more
lengthy procedure described in Sections 2-5 and -7. In the next two
sections it is supposed that the parameters A and 1 on both sides

of the regenerator are known.

2-9.1 Use of Harmonic Means of Dimensionless Lengths
First, the harmonic means of Aa and Ag and of ][a and
Tlg are determined:

1 1
n e Ag T, Na T,

Second, employing charts for the balanced regenerator find qReg n using
3

the calculated values of Am and I[m. The effectiveness qlbg,m is

practically equal to the effectiveness of the given unbalanced regenerator.

2=9,2 Use of Harmonic Mean of Effectiveness

Hausen suggeéted the following procedure. Determine the effect-
iveness 'lReg,n of a balanced regenerator with parameters Aa and ][a
and the effectiveness " Reg,g. of a balanced regenerator with parameters
A_ eand I[g. Then the effectiveness of the given unbalanced regenerator

g
is practically the harmonic mean. Thus,

2 . 1 A 1

R + -
‘]Reg,m, 7lReg,aL 'lReg,g

(2-66)

2=10 Effect of Curvature in the Drum-Type Matrix
In Appendix A it is shown that a simple transformation allows all re-
sults of the calculations for a flat matrix to be employed in dealing with
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e drum-type matrix., The major changés occur in the transformations of
Section 2-2.6, where & and N ere defined. The new values of &

and n ere

2
| r -rr
a =:§: o 2@K o (2'67)
P 2 :
and

2 2

r-r
BT (e

In these equations m' is the mass rate of fluid flow per unit length of
the regénerator axis; K is the fraction of the circle subtended by the
fluid in question; r 1is a general radial distance; ry is the inmer
radius of the drumj @ is the angle measured from the plane of entrance;
and w is the angular speed. These coordinates allow for the changes

of temperature distributions caused by the curvature of the matrix,
The corresponding new values of A and T are:

hS™

mp
and
m
M (210

where L 1is the thickness of the drum and m; is the mass velocity
of the fluid at the mean radius of the drum.

2-11 Simplified Theories for Regenerators with Small Reduced Periods
In aircraft applications, the reduced periods for the regenerators
are rather short, of the order of magnitude of 5. The short reduced

periods can be due either to high matrix speed Vv or to the small ratio
of the water equivelents of the flowing fluids to that of the "flowing"
matrix, '
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For infinitely short periods, i.e., for Tla = ng = 0, Nusselt
(Ref. 22) showed that the regenerator would heve the seme thermsl charac-
teristics as a recuperator. Under this condition, the matrix temperature
depends only on x (or- & ), is independent of y© (or n)s and is the
same in the two streams. Also, the temperatures of the two fluids are
functions of x only. For this problem, Nusselt considered both the
balanced and unbalanced cases.

Iliffe (Ref. 13) further showed that for unbalanced regenerators with
infinitely short periods, if ng c Y=o e Y*, then the effective-

p,a @& € Ps8 &
ness would be that of an unbalanced recuperator, nemely,

1

TRec = 1 1 (2-71)
L
K, A,
For balanced regenerators this reduces to the balanced recuperator
effectiveness,
A
qRec

= K772 (2-72)

According to Tipler (Ref. 29), the problem of the high~speed re-
genérator with linear temperature distributions of the matrix was solved
by Lubbock and Bowen (Ref. 19). The general assumptions of Hausen's
theory are the basis of the solution. Tipler represents the results as
follows:

Mg 2 L 1
—— * — = coth e + coth T——%— (2'73)
L9 "Reg A, * g

Tipler compared values of qﬁeg thus obtained with those from Hausen's
- theory for balanced regenerators, He found that for T = O the agree-
ment is good and that for other velues the effectiveness derived by this
method is less than Hausen's values. For values of T wup to 10 the

error is within L per cent. Up to N = 5, which covers a large range of
practicel interest, the maximum error is 1 per cent. '
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Corbitt (see discussion of Ref. 13) presents the simple equation,

2
Trog = Mpec = 5 . (2-74)

where Wp . 1s the value obtained from Eq. 2-71 or =72. This relation
appears to be accurate within 1 per cent in the range of qReg from 0.8
to 0.98 and of U from O to 0.6.

2-12 Effect of Conductivity on Regenerator Performance
The assumption of Section 2-1,L, which specifies that the matrix be
made of a certain type of thermally non-isotropic sol?d, cannot be exactly

fulfilled in practice. In the next sections the influences of conduction

in the matrix are considered.

2=12.1 Conductivity in the x-Direction

When the general procedure of Section 2-2 is followed and the
conductivity in the x-direction is admitted to the problem, Eq. 2-5 ap-
pears with another term:

he B . omo Ot ® ., Pt
mcpgg"'c V-a;'*evpvcps}-'-k(l-ﬁ)?-—‘o (2-75)

wvhere k 1is the effective conductivity of the mntrixvinlthe x-direction.
Also, Eq. 2~7 would be replaced by

- Ot _ | Ly 3%t oo
vC -b?-.-hS"'(t-O)+k(1-@)';'y§ (2-76)

Equation 2-9 would, therefore, remain unchanged and together with Eq. 2-76
would determine the rate of heat transfer in the regenerator. It appears
that this general problem has never been solved analytically.

However, the case of infinitely large conductivity in the x-
direction was solved by Nusselt (Ref. 22). In this case the matrix tem-
perature is independent of x and the maximum effectiveness is 0.5.
This theory could possibly be applied to very short matrices,
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Also, Hahnemann (Ref. 8) solved the special problem of the case
that 1\" = “'g' = 0. Here the heat capacity is not a criterion of per-
formance; it may'take any value without affecting values of T or A .

Hahnemann found that to represent the results he could use the parameter,

L J
* = miogr (2-m)
vwhich represents the ratio between the heat transfer by convection and
that by conduction. It may be observed that & increases as k de-

creases, so that for a matrix with zero conduction in the x—dj.récﬁion,
as assumed by Hausen, & = o.

The essential results of Hahnemann's work are shown in Fig. 2-9.%

‘Hausen's matrix is represented by the straight, diagonal line for & = oo.

It is observed that as & decreases (i.e., k ‘increases) s the regenerator
effectiveness decreases. For a given value of & s there is an optim

value of A, at which the regenerator effectiveness is a maximm,

The last observation may be explained as follows: The general
tendency, as shown in Fig. 2-9, is that Rei rises with increasing A .
However, if A is already large, then the rate of change of qReg
with respect to A is rather small., Now, suppose that [ is already
large and is increased by diminishing m", say, by increasing the super-
ficial cross-sectional area of flow. This change would have no influence
on ¢ . However, the heat conduction per unit rate of flow would increase,
ard at a certain value of N\ , namely, the optimum value, this loss due to
the increase of conduction offsets the gain due to the increase of A.
As N 1is increased further, the conduction losses become excessive and
YlReg diminishes.

Another parameter used in Fig. 2-9 is the quantity,
Ne =k(1-p)/ (a" % L). It may be considered as the ratio of the
rate of heat conduction along the matrix to the rate at which heat is
carried by the fluid. Cox and Stevens (Ref. 5) used Hahnemann's results
for balanced regenerators to plot Fig. 2-10, which covers the range of
interest in regenerator design. Again, the parameter is A/®, This

% This figure was deleted from this report. It is available in the
literature cited as Reference 8,
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NOTE
This figure has been deleted
from this technical report, but .
is available in the literature
cited as Reference 8 of this

WADC TR 55-13 48

report . .




I
i

O=I1 HIlIM SYHOLVY3IN3O3Y QA3ONVIVE
ATIVNY3HL 4O SS3N3AILO3443 3HL NO
XRILVN 3HL ONOTTV NOILONANOD 40 103443 01-2'9l4

e

m.- XIMLYN ONILONANOO-NON Vv 40 SS3IN3AILO3443
60 80 L0 90

000

NOILONA3N

|

200

\

2 ‘Do
_ Puod Doy, - bey,

v0°0

900

A

80°0

NEAVINAVA

oro

SS3AN3AILD3443 HOLVY3IN393M NI

o ———

WADC TR 55-13



parameter would seldom be more than 0.02, which in the usual range of
operation'reduces the regenerator effectiveness by less than 0,015, For
most design purposes the effect of conductivity in the matrix could be
neglected. It is advisable to check this effect when dealing with very

short mtrices.

2-12,2 Conductivity in the 2-Direction

In the main £heory the matrix was assumed homogeneous (see
Section 2-1.1). This implies that solid particles, as well as voids,
have infinitesimal volumes. Under such conditions, each solid particle
would be affected directly by the flowing fluids while neighboring solid
particles would not affect each other. A reel matrix, however, consists

of solid elements of finite size, and some solid particles do not come in
diréct contact with the fluids but exchange heat by conduction through
neighboring particles. For example, if one considers a matrix built of
solid strips as shown in Fig. 2-11, then the particles at the center of

a strip are heated and cooled by virtue of the heat conduction through
particles lying between the center and the surface. If those strips are
of infinitesimal thickness, then each solid particle would exchange heat
directly with the flowing fluids and the original assumptions would still
be satisfied. Also, if the conduction of the strip in the z=-direction is
infinitely large (while that in the x- and y-directions are zero), then
the originel assumptions are also satisfied, because there would be no
resistance to heat flow between the flowing fluids and the inner solid
particles.

The case of a matrix with finite conductivity in thé zZ-direction
and zero conductivity in the x- and y-directions was considered by Nus-
selt (Ref. 22). He gave a graphical method of solution. Ackermann
(Ref. 1), a student of Nusselt, undertook an analytical solution and de-
veloped an iterative method which is very tedious.

The effect of finite conductivity in the z-direction was esti-
mated by Tipler (Ref. 29) in the following menner: He considered the
case of a slab whose surface temperatures change sinusoidally. He calcu-
lated the heat stored in the slab at the peak surface temperature and
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compared it with the heat that would be stored in the slab had it beeh of
infinite conductivity. "He found that the ratio of the two amounts would
be 0.99 or more for practical fegenerators. Hence, for all practical
purposes, the effect of finite conductivity in the z-direction can be
neglected,

Nusselt (Ref. 22) also gave a solution for the case of a strip
mtrix with infinitely large conductivity in the x-direction, zero con-
ductivity in the y-direction, and finite conductivity in the z-direction.
The solution was given as expressions of t and © in Fourier series

in terms of y and z.

2-12.3 Conductivity in the y-Direction

In the min theory the effective conductivity in the y-direction
is assumed to be zero. The case of finite conductivity in that direction
seems never to have been considered in the literature. However, the case
of infinitely large effective conductivity in the y-direction is equivalent
to that of infinitely high matrix speed v, which has been discussed in
Section 2-11,

2-13 Effect of Leakage on Regenerator Performance

The theoretical treatments are based on the assumption that no leakage
occurs. In practice the leakage diminishes the effectiveness by cooling

the hot gas before its heat capacity cen be most fully utilized in the
matrix .

Harper and Rohsenow (Ref. 9) calculated the reduction in the re-
generator effectiveness assuming that half the leakage occurs at either

side of the matrix. Their results are shown in Fig. 2-12 for several

values of fractional leakage Am/m. One may employ this chart to obtain

the effectiveness Ylgeg of a regenerator with leakage. If it were

assumed that all leakage occurs at the downstream air-side of the metrix
(i.ee, leakage into the gas at the upstream end of the gas-side) the cor-
rection would be nearly doubled, with further reduction of the effective-

ness. However, it is more probable that the leakage would be less on the
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downstream air-side than on the upstream side. Consequently, an effective-
ness calculated by means of the chart in Fig. 2-12 would be slightly low.

For the practical range of effectiveness and for tolerable values of
the leakage, the correction is about 0,01, which is not serious. However,
the effect of leakage on the thermal efficiency of the entire gas turbine
power piant is a serious matter. This subject receives detailed attention
in Chapter L.
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Chapter 3: PROPERTIES OF REGENERATOR MATRICES

3«1 Void and Solid Fractions
Several geometric properties and some of the mechanical and thermal

properties of matrices are readily expressed in terms of the void fraction,
which is denoted by (. The co-velue, the solid fraction (1 - p), of a

given matrix of mass m, and corresponding total volume Vtot is the
ratio of the apparent density to the true density of the solid:
- .
1 -p) = g— = Psjepp (3-1)
tot es fs

It is recommended that Eq. 3~1 be employed as the operational definition
of a rather simple laboratory procedure to determine @ for matrices of

heterogeneous construction having unknown packability.

3-1.1 Flame Trap Matrices

The void fraction of flame trap matrices is equal to the ratio

of through area to facial area. This ratio is easily calculated if the

passeges repeat themselves in any uniform vay.

3-1.2 Wire Screen Matrices

Consider screens made of wires having uniform diameter D ex-
pressed in feet. The number of w1res per foot in one direction is n
and in the other n,; the scr?ens are stacked so that the number of layers
per foot of length is n3, then neglecting any bends of the wire, the
solid fraction is

(1-p) =F0° (m +n,) 5, (3-2)

If the screens are closely packed, = 1/(2D) and

3
(1 -p) =g Dmy +ny) (3-3)

Further, if ny =n, = n, then
(1-p)=D-n (3-L)
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3-2 Heat Transfer Surface Area per Unit Volums

The effective heat transfer surface per unit volume of matrix is

sm =____vS =Si- .J (3-5)
tot Ps’
The last expression allows S™ to be evaluated in terms of the mass of
the solid material used to build the matrix, if it can be assumed that
the contact areas are negligible compared with the areas exposed to the
fluids.,

For example, consider a matrix made of any metel strips of uniform
rectangular cross section; let a be the thickness and b the breadth
of the strips. If the total length of the strip is 1, the totel sur-
face area is 2(a + b) 1, and its mass is &b « 1 Fs. Consequently,

for such a matrix Eq. 3-5 yields

sm =228 (1 4 g) (3-6)

And if the strip is very thin, so that a <D, .
2(1 -
sm o= 21=P) | (3-7)

In a similar way, if wire of diameter D is used to construct the

matrix, Eq. 3-5 becomes

sm = AKL_:_QI . (3-8)

D

In particular, if the wires are in the form of closely packed screens of

square mesh (n by n wires per foot),

s = wn (3-9)

3=-3 Free Area of Fluid Flow
The free flow area is needed to evaluate the velocity through the

matrix interstices, which is of interest in determining the pressure drop
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and heat transfer characteristics of the matrix. In the following dis-
cussion it will be convenient to denote the ratio of the free flow area
to the facial area by the symbol .

In a flame trap matrix o= @c However, in matrices of heterogeneous
construction and even in orderly wire-screen matrices, the free flow area
becomes a rather nebulous quantity. In the special case of closely packed

wire screens the following approximation has been employed:
a= (1 -nD)(1 -nD) (3-10)
Further, if n =n,=mn,
2
a= (1 - nD) (3-11)

Notice that the free flow area obtained by using « lies in a plane
normal to the main direction of flow., However, as in the case of tube
banks it may be desirable to employ the absolute minimum cross-sectional
area when dealing with the pressure drop and heat transfer properties of

matrices; this minimum may be in an oblique plane.

3-L4 Equivalent Diameter
In the case of turbulent flow inside tubes, it has been found that
both pressure drop and heat transfer data obtained with passages of many

different shapes are well correlated if the so-called equivalent diameter
is employed as characteristic length in the dimensionless groups, The
equivalent diameter is

p = L (cross-sectional area)
e~ wetted perimeter

(3-12)
In the case of laminar flow, the use of the equivalent diameter has not

been quite so satisfactory and a separate correlation is needed for each
shape, Nevertheless, much data are often presented in terms of De'
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For a wire screen matrix, Ey., 3-12 yields

D = ih‘s% - !g.g_ . (3-13)

It follows that if the screens are of uniform mesh and closely packed,

p - ba -m?
e

(3-1k)

in

3-5 Matrix Heat Capacity

The heat capacity of a matrix is equal to the product of its mass
and the specific heat of the material. It follows that the heat capacity

per unit volume of the matrix is

cm = (1~ p) Ps ,s : (3-15)

3-6 Pressure Losses

The static pressure drop from the inlet duct to the outlet duct on
either side of the regenerator my be treated as though the matrix were
a recuperator, particularly if the matrix is of the flame trap type. Thus,
the pressure drop is comprised of three parts: the entrance or contraction
loss, the core or frictional loss, and the exit or expansion loss., From
en equation used by Kays (Ref. 16) and by Kays and London (Ref. 17), we
my write
J

Do =p, = ¢’ [(K +T2x )+(1+cx2)(T2-‘1).+f- L"-Tb] (3-16)
1-P; m ot Fex T 5T, |

where Kc' and K , @&re respectively the contractioﬁ end expansion co-
efficients based on the dynamic pressure inside the core; T is the ab-
solute temperature, subscripts 1 and 2 corresponding to the inlet and
exit conditions, respectively; £ is the friction factor of the core,
also based on the dynamic pressure in the core; De is the equivalent
diameter of the core passages; Tb is the bulk mean temperature of the
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fluid; [p] = 1v/2t%; [y ] = 1o/et3; ana [6] = 1b/sec £t2,

In most caeses, the effects of the entrance and exit are'relatively
small compared with the frictional losses. Therefore, it usually is un-
necessary to evaluate Kc and Kex with great accuracy; values in the
literature for reasonably similar situations my be employed. For

exanple, Kays (Ref. 16) has given values for some tubular constructions.
‘In the case of wire screen matrices of reasonable length only the last
two terms in the brackets of Eq. 3-16 need be considered because the
other is, relatively, rather smll.

The friction coefficients f for laminar flow in matrices have been
correlated by means of the typical expression,

f= ??_ (3-17)
Re
where
G De :
NRe = a* /‘. (3"'18)
3-6.1 Friction Factors for Flame Trap Matrices

Locke (Ref. 18) found that the friction coefficient for smooth
flame trap regenerators composed of round tubes lies within 2 per cent
of the theoretical values obtained using C = 6l.

Y, TR

Romie et al (Ref. 2L) perforied pressure drop tests on two
flame trap matrices, one made of flat plates and one of cylindrical tubes.
After teking the entrance and exit losses into account, the authors found
that the cqrreSponding theoretical values, namely, C = 96 for the flat
plates and C = 64 for the tubes, were in fair agreement with the experi-
mental values, particularly if Nhe - 1000.

, 1The mass velocity G is based on the facial or superficial area,
This is to be distinguished from a mass velocity based on the free or
through area of flow, In our symbols the mass velocity based on the free
area is G/a. A bracketed expression [...] is to be read, "the units
of ... are', ‘ '
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Johnson (Ref. 15) performed single-blow tests on matrix materials
of two shapes shown in Fig. 3-l. The lengths were varied from 0,073 to
0.292 ft by employing one, two, or four elements in series. The range of
the Reynolds number was 25 to 200, His experimental results were corre-
lated by means of Eq. 3-17 with C =17.7 and n = 0,78 for the matrix
material of 0,030-in, spacing and C = 29.8 and n = 0.87 for the
material of 0,021-in. spacing. The meximum deviation of the experimental
points from the mean correlating lines was about 25 per cent, but on the

average it was about + 15 per cent.

Cox and Lamb (Ref. L) employed six flame trap matrices on a
model rotary disk type regenerator. The matrices were made with triangular
passages of a type similar to the ones used by Johnson. The ratio L/De
took values from 31.2 to 82.5, and the Reynolds number veried from
about 50 to LOO. The authors' cotrelation can be represented by
Eq. 3-17 if n=1 and

N,
C= L+ (1.66 = a® ) =2 (3-19)
ZL7De’ .

In their work, a lay between 0.7 and 0.83.

3=6.2 Friction Factors for Wire Screen Matrices

Johnson (Ref. 15) performed tests on four wire screen matrices.

- Results of the work and a description of the matrices are presented in

Fig. 3-2. It may be noticed that the constructions of Matrices A and B
epparently differ only in the total number of layers. The results from
Matrices C and D, which have the same void fraction, have been correlated
with a single curve., The dotted line may be represented by Eq. 3-17 with
C=25 and n = 0,5.

Jakob, Kezios, and Sogin (Ref. 1lL) performed steady-state tests
on a wire screen matrix of 0.,0075-in, diameter wire and 35 mesh; there
were 79 layers, and the matrix length was 1 inch. The authars found a

virtually uniform value for £, namely, 4.8, in the range of NRe from
about 900 to 1200.
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Romie et al (Ref. 2L) observed that the pressure-loss coefficient,
in addition to depending upon the Reynolds number, depends upon the follow-

ing three items:

(1) The area ratio o. For example, the pressure-loss coefficient
was found to double its value when o was reduced by half,

(2) The spacing between screens, that is, the number of screens per
unit length. For example, the pressure-loss coefficient for an assembly
of unspaced screens decreased 15 per cent when the screens were separated
by & free space of 1/32 inch,

(3) The totalvnuuber of screens in the assembly. The pressure-loss
coefficient decreased or increased as the number of screens increased
depending, respectively, upon whether the screens were| closely or widely
spaced. 2 |

‘

Yore experimentation on configurations of wiLe screens are

needed.,

3=7 Heat Transfer .

The coefficient of heat transfer h, which must be erployed in
eveluating A and T (see Eq. 2-18 and -19), has been found by
experiments based on the single-blow technique (e.g., Ref. 15, 18, and 2L)
and on results from periodic regenerators (e.g., Ref. L and 20). Also,

coefficients obtained from tests on certein recuperator cores may be
useful (e.g., Ref. 17).

It has been customary to correlate theicoefficients by means.of the
following two typical equations:

Ny, = O N, | (3-20)
. and
"2 | (3-21)
Ngt = o-1 >4
' Re . : |
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where

hDe
NNU. = T (3—22)
Ny = Stk (3~23)
St ~ GEp

and the Reynolds number is defined by Eq. 3-18; k 1is the conductivity of
the fluid evaluated at a mean temperature. Since the Stanton number is
the ratio of the Nusselt number to the product of the Reynolds number and
the Prandtl number (NPr = Cp,M/k), the relationship between C, and C

1 2
is

1= Npr ¢ G (3-2L)

For eir the velue of Np. is 0.689 + 0.005 in the range of temperature
from 200 to 800°F,

In the next two sections, data for flame trap and wire screen matrices
are presented. Regarding the relative merit of the two types of matrices,
Johnson remerks that the lowest weight for a given performance is obteined
with a fine wire screen matrix, but the pressure drop is higher then for
a smooth flame trap matrix. The saving in weight is more merked than the
increase in pressure drop; however, when the partitions required in con-
structing the screen matrices are considered, the advantage in weight may
be reduced,

3-7.1 Coefficients of Heat Transfer for Flare Trap Matrices

Because the passeges of regenerator matrices are small, the flow
is expected to be laminar. Glaser (Ref. 7) has shown that for a circular
tube with linear temperature distribution (uniform heating) in the axial

direction along the wall and with constant fluid properties, the limiting1

1The limiting velue of the Nusselt number is the value toward which
the Nusselt number approaches, by virtue of pure conduction, as the Rey~-
nolds number approaches zero, Also, this is the value that would occur
in a very long passage or in a passage where the velocity and temperature
profile are everywhere fully developed (cf. Eq. 3-25).
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value of the Nusselt number NNu,co = 4.36. Norris and Streid (Ref. 21)
assumed constant wall temperature and obtained NNu,co = 3.66. The ex-
perimental results on cylindrical passages by Locke (Ref. 18) fall between
the values obtained by Glaser and by Norris and Streid. The experimental
results of Romie et al (Ref. 2L) on a circular-tube matrix deviate about
10 per cent from Glaser's theoretical line in the range of NﬁeNfr/(L/De)
from 7 to 30. Below this range, dom to about 3.5, the experimental

data are about 20 per cent higher than the theoretical values.

Clark and Kays (Ref. 3) performed calculations and steady-state
experiments to study the laminar heat transfer in smll rectangular pas-
sages of various aspect ratios. They correlated their results by means
of the typical equation,

N. =N [i +C . §§E_L_§2£] (3-25)
Nu =~ "Nu, ® 3
/)
Both Ng ., eand Cy depend upon the aspect ratio’ Y/X and how the
3 .

tube wall is heated.

For a good approximation to the regenerator matrix, it may be

assumed that the temperature distribution is practically linear. According-

ly, the recommended values of NNu © and C3 are those for the case of
s

uniform heat input. The authors! values of NNu - for this case are
b

shown in Fig. 3-3, and their suggested velues for C_, may be represented

3
by the equation,

= 0.0025 + 0.020 & (3-26)

Cs T

The experimental results of Romie et al (Ref. 24) on the flat plate matrix
(infinite aspect ratio) deviate about + 10 per cent from the values given
by Clark and Kays.

Cox and Lamb (Ref. L) tested six matrices with triangular pas-
sages in a model rotary regenerator. Their results for all the matrices

1See the inset in the graph of Fig. 3-3.
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deviated by about 10 per cent from the correlating line represented by
Eqe 3-25 with My, o0 = 2.4 end Cy=0.0735. The mterials were like
those used by Johnson (Ref. 15). With reference to Fig. 3-1, it may be
observed that the passages were approximately isosceles triangles with
included right angles. For the equilateral triangle with uniform heating

at the wall Nm,co = 3,00 (Refe 3).

It has been found impossible to fit Eq. 3-25 to all of
Johnson's data for the matrices of Fig., 3-1, and it is believed that the
correlation of Ref. 4 is the more reliable one for flame trap matrices
with triangular passages. The author's original correlations, which

appear in the form of Eq. 3-21, are tabulated below. The correlations

represent the data in the range of NRe from about 50 to 200. For
Nﬁe": 50, the Stanton numbers appear to reach limiting values. Average
values of the Stanton number in this range are denoted by N and

St,av
are presented in the next to last column of Table 3-1.

Table 3-1. Heat Transfer Correlations for Flame Trap Matrices (Ref. 15)

_igtriiml

Spacing L c2 l1-n NSt,av NNu,c

(in.) (ft)

00030 0.0729 - - 0.0)-15 -
0.030 0.146 2.7 1.0 0.037 1.96
0,030 0.292 0.845 0.81 - 1.6
0.021 0.0729 - - 0,032 -
0,021 0.292 0.205 0.55 0.024 1.5

Further, Johnson remerks that at high Reynolds numbers his Nus-
selt numbers tend to become constant. Average values of the Nusselt num-
bers in this region are denoted by NNu o aend are presented in the last

4

colum of Table 3-1,

In the so-called Fraenkl packing, two ribbons having corruga-
tions at L5® to the ribbon edge are put together so that their corruga-
tions are at right angles to each other. Then the two ribbons are wound
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in a spiral to form a disk of desired diameter and of a height equal to
the ribbon width. One or more such disks are placed in series to form

a matrix of desired length. Sometimes spacers are used to separate the
packings. These packings have been employed mainly in regenerators for
liquefaction of gases. The heat transfer characteristics of Fraenkl peck-
ings have been investigated by Glaser (Ref. 6) and by Lund and Dodge

(Ref, 20). Glaser correleted his results with the equation,

l“,2.007(1,/1)9) + 0,65
_ e
N = 1002/ B,) +0.50 . (3-27)

3-7.2 Coefficients of Heat Transfer for Wire Screen Matrices
Values for h obtained by Johnson (Ref. 15) are in general

higher than corresponding values for flame trap matrices. Of course,

the pressure losses are correspondingly higher. Johnson's correlations
can be represented by means of Eq. 3-21. In each case n = 0.5. Values
of the constant 02 are presented in Table 3-2. The range of the Rey-
nolds number is about 25 to LOO. Since some question has been raised
regarding Johnson's data for flame trap matrices, the same question arises
concerning his data for wire screen matrices. However, there are no

other data available on closely packed screens for comparison.

Table 3-2. Constant 02 to be Employed in Eq. 3-21
for Wire Screen Matrices (Ref. 15)

Matrix Description
(cf. Fig. 3-2) Mesh Wire Diameter No. Layers C,
. (1n.-l) (in.)
A 30 0.,0105 100 0.515
B 30 0,0105 150 0.515
c 20 0.009 100 1.00
D Lo 0,0045 98 0«7k
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Rome et al (Ref. 2L) employed two wire screen matrices, One
consisted of 36 layers of 2L mesh screen made of 0.0075-in. diameter wire
and the other of 28 layers of 16 mesh screens made of 0,013-in. diameter
wire. The layers were spaced 1/32 in, apart. Their Reynolds nuxmber,
based on wire diameter as characteristic length, varied from about 20
to 500, The authors' most reliable results are in surprisingly good
agreement with data for flow normel to single wires, namely,

g p 052
T (3-28)

-hi-’= 0.32 + 0,13 (
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Chapter l: EFFECT OF REGENERATOR PERFORMANCE
ON THE GAS TURBINE POWER PLANT

-1 Actual Cycle of the Gas Turbine Power Plant
The actual gas turbine cycle differs from the ideal cycle in several

ways., With reference to Fig. L-l, which is a temperature-entropy diagram
of an actual cycle, two importance differences may be observed:

L=1.1 Actual Work of Compressor and Turbine

First, the compression and expansion processes are isentropic

in the ideal compressor and turbine but not in the actual ones. Increases
of entropy occur in the actual prdbesses. These increases are represented
in the T,s-diagram by the amounts of shifting of the Points 2! and L,
the ideal states, to Points 2 and L, the actual states. These changes

of entropy manifest themselves as an increase of the power input to the
compressor and a decrease of the power output from the turbine. The net
effect my be regarded as either a decrease of the output of a given

plant or an increase of plant size for a given output.

It is customary to express the deviations between the actual
and ideal units in terms of the compressor efficiency,

by =hy

= —— (L-1)
e =B, = .
and the turbine efficiency,
h, -h :
B, ()

CLh=1,2 Pressure Losses

Second, there are pressure drops in the low- and high-pressure
sides of the cycle on account of ducting and any heat exchanger that may
be present. Hence, p3 = Py and P> Py- The effect is to decrease
the power output and the power plant thermal efficiency. '
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L-1.3 Leakage
A third difference between the ideal and actual regenerative

cycle is the leakage from the high-pressure air to the low-pressure
exhaust gas. Some is passed by the seals, and some is carried over by
the rotation. On account of this leakage, the amount of fluid passing
through. the compressor is greater than that passing through the turbine.
Hence, a larger and more powerful compressor is required for a given tur-
bine output. The net result is a decrease in the thermal efficiency of
the power plant. '

=2 Thermal Efficiency of the Actusl Cycle
The power output of the plant and the thermal efficiency of an actual

gas turbine cycle operating with practical compression and expansion units,
with pressure drop in the intermediate ducting and regenerator, and with
leakage from the air side to the gas side are developed in Appendix B,

The calculations are based on the assumptions that the fluid is thermelly
and calorically perfect and that the fuel has negligible influence on the
thermodynamic properties.

4~3 Evaluation. of the Effects of Leakage and Pressure Drop

Harper and Rohsenow (Ref. 9) employed the results of Appendix B or
their equivalents, to calculate and demonstrate the effects of leakage

and pressure drop for the following operating conditions:

Air inlet temperature, 60°F, or T, = S20°R
Meximum temperature,  1500°F, or Ty = 1960°R
Compressor efficiency, e = 0.85
Turbine efficiency, | N = 0.88

The authors expressed their assumed values of leakage and pressure loss,
respectively, in terms of the leakage fraction Am/m and the sum of

the pressure drop ratios :E:(zkp/p). The quantity m is the mass rate
of flow through the compressor; and with reference to Fig. L-1,

Py =Py P)-P
>, bp _ 2773 LT H |
Z P P, | P . (-3)
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The ratio of the first term of Eq. L=-3 to the second, which would be de=-
noted by 02/ % in Appendix B, was not given by Harper and Rohsenow but
eppears to have been taken as 3/7 in one pert of their calculations.,

The authors calculated the maximum thermal efficiency ch,m,x and
the corresponding (optimum) pressure ratios for the cases that Am/m = 0,
0,05, and 0,10 and thet S (Ap/p) = 0.05, 0.10, and 0,15, Results
of their study are discussed in the next two sections.

h-3.1 Effect of Leakage
As has already been remerked in Section 2-13, the influence of

leakage on the effectiveness of the heat exchanger is smrll. The influence
of leakage on the power plant performsnce is shown in Fig. L-2a and -2b.
With regard to increasing values of Am/m, the following changes may be

observed:

(1) The maximum attainable thermal efficiency decreases. This is
mainly due to the decrease in turbine output, for the mss flow in the
turbine is less than the mass flow at the intake of the power p]:ant.

(2) The optimum pressure ratio rp opt d~creases. The effect is
3

most pronounced at lowest values of the regenerator effectiveness,

(3) The work output per pound of air entering the power plant de-
creases. This is due to the decrease of both the mass flow in the tur-

bine and the optimum compression ratio.

l=3.2 Effect of Pressure Drop
The effect of pressure drop is shown in Fig. L-3a and -3b. With

regard to increasing values of 2 (Ap/p), the following changes may be

observed:

(1) The maximum attainable thermsl efficiency decreases. This is

due to the increase in the turbine expansion ratio.
(2) The optimum pressure ratio increases,
(3) The work output per pound of air decreases. -
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l=ly Effects of Regenerator Speed, Length, and Mass Velocity
Herper and Rohsenow (Ref. 9), employing the results of Saunders and

Smoleniec (Ref. 25), also showed how the rotational speed N, regenerator
length L, and the mass velocity m" affect the power plant. In con-
sidering any one of these three variables, the other two were regarded

as constant. Also, the net output of the gas turbine power plant was
maintained constant under the conditions specified in Section L-3. A
balanced regenerator with A =5 and T =L was taken as a basis

for reference. The results of the authors' discussion are summarized

in the next three sections.

L-L.1 Effect of Regenerator Speed

An increase of regenerator speed decreases W proportionately

but leaves A unaltered. The increase of speed increases the carry-over
losses, It also influences the leakage through the seals insofar as the
regenerator speed affects the optimum pressure ratio. Regarding the

pressure losses, Harper and Rohsenow took EZ (Ap/p) to be a fixed velue.

The results of their calculations are shown in Fig, lL-L. It
may be observed that the meximum cycle efficiency reaches a maximum at a
certain speed; then it decreases on account of the increasing carry-over
losses. The matrix reletive volume V increases since the work per
pound of air W decreases while total power output remmins constant.

The optimum pressure ratio r

P ,opt decreases as the speed increases.
3

L-l.2 Effect of Regenerator Length
In this case the reduced length A changes while the reduced

period N remins constent, The results of calculations for a fixed
value of Am/m are shown in Fig. L-5.

‘The pressure drop > (Ap/p) increases with the matrix length.
Ageain, the mximm thermel efficiency reaches an optimum vdlue; then it
decreases on account of the fising pressure drop. Since the work per
pound of air entering the turbine (denoted by W) decreases as the matrix
length increases, the matrix facial area as well as length increase to
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provide & given fixed total power output. For this reason the relative
volume V increases more rapidly than just linearly.

L=L.3  Effect of Mass Velocity |
A change of the rate of flow may affect both the reduced length
and the reduced period, because it may be accompanied by a change in the

value of the coefficient of heat transfer h. For example, if it is
assumed that the flow through the matrix is such that

h ~ (u0)Y/2 (L)
then |

02~ (@t ; (4-5)
and |

12 ~ o | (-6

Assuming that the pressure drop increases linearly with =" and that

A m/m remains constant, Harper and Rohsenow presented the results shom
in Fig. 4-6. It can be seen that W reaches a mximum value after which
it decreases on account of the rising pressure loss.
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Chapter 5: A DESIGN PROCEDURE

5-1 Preliminary Remarks

As mentioned in the introductory chapter, this manual deals mainly
with the thermal design. However, many features of the mechanical design
dictate the thermal performance; and limitations of weight, space, and

lécation, in contributing to the over-all problem, my very well deter~
mine whether the heat exchanger is a practicable matter in a given appli-

cation,

The designer must use his science and art to build a regenerator that
lies within the allowable mechanical limitations and that provides a
satisfactory over-all performance of the power plant. He faces this task
with a system or group of quantities whose values are given. Some of .
these values have had to be determined from the performance requirements,
some by auxiliary calculations, and others by judgment, which improves
with experience., Generally, his design procedure depends upon the par-
ticular group of values he has to start with.

In the following sections a rather special problem is treated., A
statement of the problem appears in the next section. Then the analysis
is briefly discussed. This is followed by a solution with some sample
calculations. The solution illustrates the application of much of the
material in Chapters 2 and 3. The results are not intended, however, to
be definitive without further development and experimentation, particularly
with regard to the pressure drop and heat transfer characteristics of the
type of matrix selected. It is hoped that the procedure presented here
may suggest how other groups of starting quantities may be handled and,
consequently, how other design procedures may be devised, l

5-2 Statement of the Problem

We suppose that the designer has been given the quantities in Table 5-1.
As can be seen, his regenerator is to achieve an effectiveness of 90 per
cent, We suppose that a drum type regenerator is to be designed. For any
matrix construction that he selects the designer must calculate the quanti-
ties listed below: )
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L the matrix length, that is, the thickness of the drum; ft
Dd the mean or pitch dianater of the drum; ft
1 the axial length of the drum; ft
21\-1(‘ the angle subtended by the air side
2«1K8 the angle subtended by the gas side
N the speed of rotation; revolutions per second
| Table 5-1. Given Design and Performance Conditions
for the Illustrative Problem
Symbol™ Quantity Value Units
P power at the shaft - 2500 hp
Ne conpressor efficiency 0;85 —
" comb combustion efficiency '0.95 —_
N4 turbine efficiency 0.85 -
'LReg required regenerator effectiveness 0.90 —_—
T temperature at compressor intake 520 °R
T,  temperature at regenerator inlet (air side) 815 °R
T3 . temperature at throttle 1810 °R
Tb- temperature at regenerator inlet (gas side) 1376 *R
P, pressure at regenerator inlet (air side) 58.8 1b/sq in.
i P}, pressure at regenerator inlet (gas side) 15.L5 1b/sq .in.
| . .
; Ap, allowable pressure drop on air side. 0.88 1b/sq in.
é&pg allowable pressure drop on gas side . 0.75 1b/sq in.
m, rate of flow on air side 140,000 1b/hr
m, rate of flow on gas side 111,000 1bv/hr

#*
Subscripts 1, ..., 4 refer to the statepoints in the cycle diagram
of Fig. k=1, All temperatures and pressures asre absolute.
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5-3 Analysis of the Solution

After a mtrix is selected the basic geometric and thermml properties
‘can be evaluated in accordance with Sections 3~1 to -5. General relation-
ships regarding pressure drop and heat transfer data can be selected from
Sections 3-6 and -7,

The pressure drop depends upon the metrix length L and the mass
velocities1 Ga and Gg. This gives two relations, one between L and

Ga and the other between L and Gg.

The heat transfer coefficients h,a and hg depend, respectively,
upon G, and Gg. Therefore, the reduced lengths ,j\a and j\g can
be expressed in terms of Ga, Gg, and L. Employing the first two re-
lations, we may eliminate G, end Gg to express f\a and j\g in
terms of L. Consequently, the harmonic mean reduced length j\m can be

expressed in terms of L,

The allowable carry-over losses £§mh from the cold-aeir side depends
upon the speed of rotation and the volume of the matrix. It will be seen
that a known value of [kmh/ma provides a relation among the quantities
N, Ga’ and L. Also, the utilization factor depends upon N, Ga’ and L.
Observing that the fractions Ka and Kg are simply related to Ga land
Gg’ we can calculate a unique value of the utilization factor U. Hence,
j\nl can be found from Fig. 2-8, and all required quantities can be cal-
culated,

5-li Selection of the Matrix
The matrix of our regenerator is to be made of wire screen. It has
been suggested that the material forming the matrix is limited by burnout

due to fuel left in the exhaust gases and that the lower limit in the size
2

of wires (or plates) may be in the order of 0,008 inch.

‘ 11t has been found convenient to let Emﬂ = 1b/hr £t and [SE =
1b/sec ft2; hence, G = 3600 m". The brackets [...] here, as elsewhere,
are to be read, "the units of ... are",

2See the refereﬂce to the work of Bowden and Hryniszak at the end of
the Bibliography.
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Johnson (Ref. 15) found that copper gauze, glass wool, and steel wool
are unsuitable for high temperatures. Thin strips of a 70:30 copper-nickel
alloy and wire gauzes of brass, of mild steel, and of stainless steel
showed no deterioration or corrosion after tests at about $00°F,

For purposes of the illustrative calculations, the gauze is assumed
to be made of stainless-~steel wire 0,009 in. in diameter. It is supposed
that the screens are of 20 mesh and are firmly packed. The basic geometric
and thermal properties have been calculated by meens of the relationships
in Chapter 3. The results are presented in Table 5-2,

Table 5-2. Basic Geometric and Thermel Properties
of the Assumed Matrix Material

et

Symbol Quantity Value Units
| D wire diameter o 0007¢ o
; n mesh 20 in,~1
B void fraction 0.86 -
1-0 solid fraction - 0.L -
sm heat transfer area per unit volume 755 et
o3 ratio of free-flow area to facial area 0.67 -
o density of the solid 187 1b/£t>
LI specific heat of the solid 0.138 B/1b F
C™  heat capacity of the matrix per unit volume ol B/ft3 F
\ D, equivalent diameter 0.00355 £t

5=5 Calculation of the Mean Inlet and Outlet Temperatures on the Cold
and Hot Sides of the Regenerator '

By definition of the regenerator.effectiveness, the mean outlet tem-
perature on the cold side of the regenerator is

1 .

- - -— L |
Ty = T2 + '\Reg(Th T2) = 1320°R
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Similarly, the mean outlet temperature on the hot side is, practically,
- - - - .
TB = Th 'IReg(Th T2) 871°R

Table 5-3 is a resume of the fluid temperatures at the regenerator
inlets and outlets. Symbols employed in the thermodynamic cycle of Fig. L=l
are related to the corresponding symbols employed in Chepter 2. Thus,

T, = 815°R while ©_ ., = T, - L60 = 355°F, and so farth.
2 a,l 2

Table 5~3. Resume of Temperatures at the Regenerator Inlets and Outlets

et

Cold Air Hot Gas
in out in out
. - ° — . ’ - .
T2_815R TA—1320R Tb-1376R TB—BTIR
- bd — L] - ° - ®
°a,1 = 355°F o&,2 = B860°F °g,1 = 916°F @g,2 = J11°F

5-6 Evaluation of the Mean Temperature of Each Fluid

In accordance with a recommendation of Cox and Lamb (Ref. L), the

fluid properties with the exception of the specific weight, are evaluated
at a temperature which is 0,6 of the way between the average wall tem-

perature and the bulk mean fluid temperature. This rule is used here even
though Cox and Lamb worked only on flame traep matrices and Johnson corre-

leted his data with a somewhat different definition of the mean temperature.
. . = /0 - oy,
The bulk mear air temperature is Oa,b = (Oa,l + Oa’z)/Z = 608°F;

the bulk gas temperature is @ = (o +06_.)/2=66L"F.
’ g1 g2

gyb
The average wall temperature t s.m is assumed tobe midway between
3

(*] and Og pe Accordingly, in the illustrative example, L 636°F.
3

H

a,b

Therefore, the temperature to be used for evaluating the fluid proper-
ties (/u, k, and cp) on the air side is

Oa,m = ts,m - O°6(ts,m - oa,b) = 625 F
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while on the gas side it is

Og,m = ts,m + 0.6(0g"b - ts,m) = 6L7°F

The specific weights are evaluated at the bulk mean stream tempera-
tures under the assumptions that both the cold and the hot fluids are

air and that air is a thermally perfect gas (gas constant R = 53.3 ft/F).

The mean pressures on the air and gas sides are 8410 and 2170 1b/ft2,

respectively, Table 5-L4 is a resure of the fluid property values that are

employed in the calculations which follow.

Table 5-4. Values of the Fluid Properties in the Illustrative Example

Fluid
Quantity f
Symbol Cold Air Hot Gas Units
1 0.168 0.0362 1v/£t°
% 0.251 0.252 B/1b F
106 . p 20,4 20.6 1b/sec ft
k 0.0270 0.027L B/hr £t F

5-7 Relationships Derived from the Correlation of Pressure Drop Data

From Section 3-6.2, the pressure drop of the matrix is, in a first
epproximation, ‘

2
Ap = £ gt . :;3;%?:;;;f (5-1)

(5-2)

‘/ e
Q‘./"’

Elirminating f end introducing the numericel values of g, «, and De’
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_ 0% L. s .
Ap—3200-;&x—— LG (5=3)

where [Ap] = 1b/ft?, [1] = 1/sec 5, [ ] = /st [L] = £, and
[GJ = 1lb/sec ftz. With reference to Table 5-1, the alloweble pressure
drops on the air and gas sides are 127 and 108 lb/ftz, respectively,
Therefore, Eq. S5-3 ylelds the system of equations,

6, = Lul7s 1723 (5-1)
6, = 0,18 173 (5-5)

5-8 Calculation of the Angle Subtended by the Ducts

Since the leakage fraction end the ratio of fuel to air are small,

it is assumed that U, = Ug = U, in accordance with Eq. 2-25. By defi-

nition,
KGe
S A
U= cwin (5-6)
Since ¢ ~ C_ _, it follows that
Pyt Psg
KoGy = K G, (5-7)
Further, L
L
K, + Kg =1~ Ksls (5-8)

where Ksls is the fraction of the circle allowed for seals, duct walls,
etc. Assuming that Kag = 0.06 (corresponding to an angle of about 22°)

and eliminating G, Gg’ and L from Eq. 5-kL, -5, and -7, we obtain the

set of simultaneous equations

K, + K, = 0L (5-9)
Ka - 0,285 Kg =0 (5-10)
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The solution is Ka = 0,21 and Kg = 0,73, corresponding to angles of
about 75° and 263°, respectively. Adjustments may have to be made at
a later stage of the design.

5-9 Relations Derived from the Correlation of Heat Transfer Data
From Section 3-7.2, the correlation of the heat transfer data for the
selected matrix is

3600 G ¢ G ’
P e
q L]

Substituting the numerical values given in the preceding sections for «,

De’ M3 and cp, we obtain the system of equations,
h, = 83.5 G, (5-12)
h = 84,3 G -
. L.3 . (5-13)
2

vhere [1] = B/hr £t° F and [G] = 1b/sec £t°. Eliminating G and ¢,
with the expressions of Eq. 5-l and -5,

h =101 17Y/3 (5-1L)
h, = 5L.6 LY/3 (5-15)
By definition, the reduced length is

"
A - _hS"L

3600 G cp

Since h and G are known in terms of L, the reduced lengths may also
be expressed in terms of L. Thus, employing Eq. 5-L, -5, =7, =8, and -11,

(5-16)

A, = 57,413 (5-17)

A = 108 L/3 (5-18)
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where [L] = ft. Further, the harmonic mean reduced length (cf. Section
2"901) is

Ay = 153143 _ (5-19)

The regenerator could now be uniquely determined if another relation
between A and L were available. In the next section an indirect
relationship is obtained: the utilization factor U is evaluated in
terms of the allowable carry-over loss. Its value is all that is needed,
because A, U, and np.  are related by the theory of the balanced re-

generator.

5-10 Determination of the Utilization Factor in Terms of the Carry-()ver
During each revolution of the matrix, cold air is carried over to

the gas side and hot gas to the air side, For purposes of illustration
it will be assumed that only the carry-over of the cold air‘ need be con-
sidered, because its density is much greater than that of the hot gas.
Also, it will be assumed that the leakage at the seals is so small that
only the carry-over is significant; in practice this may not be the case
and an estimte of the leakage at the seals would have to be made during
some stage of the design or development.:L

The rate of loss of cold air to the hot side by virtue of the carry-
over equals the speed of rotation times the weight of the air contained
in the total volume of the void space lin the matrix. Thus,

Doy = 36000 Vo o 7, (5-20)

where vtot is the total volume of the matrix. In terms of Aa, to a

good approximtion,

K
Viot = AL = A L(1 + KE) (5-21)

1An analysis of the seals may be found in the work of Bowden and

Hryniszak. See the Additional References at the end of the Bibliography.
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This allows for partitioning the matrix. Substituting this expression

for Vtot

the resultant equation,

into Eq. 5-20, observing that m = 3600 G, Ags and rearranging

K
'G P Ya Q4+ Xg)
2 a
LN (A;ma

(5-22)
)

m
a

Thé influence of Z&ma/mh on the power plant efficiency could be checked
by employing the material in Chapter L. This is not done here, and for

the sake of brevity in the illustrative example it is assumed that a satis-
factory value of Am /m, has been found to be 1 per cent. From Fig. L2
it can be seen that if the leakage through the seals is also quite smll,

no correction is necessary for the regenerator effectiveness.

It follows that
G‘ .
A = 6h.S (5-23)

where [G,] = 1b/sec £t2, [L] = ft, and [N] = sec™ . The right-hand
member of Eq. 5-6 is now evaluated with the result that U = 0,036.

5-11 Results of the Sample Calculations g
Entering the theoretical curves of Fig. 2-8 for the balanced regenera-

tor with np . =0.90 and U = 0.036, we find' A, =18, (It my be ob-

served that this is exactly the value that would have been obtained by

erploying Eq. 2-72, the reason being that the utilization factor in this
illustrative exanple.is very smll.) Consequently, from Eq. 5-19,

L = 0.342 ft or about L.1 inches. Having found the value of L, we
may readily obtain all other quantities of interest. The values of meny
of them are listed in Table 5-5.
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Table 5-5. Results of the Calculations

Symbol Air Side Gas Side Units
v 0,036 0,036 -—
r 0.342 - 0.3L2 £t
G 3.02 0.855 1v/sec £12
h Cus 78 B/hr £t2 F
Npe = @ e/('/L .a) ‘ 780 222 - -
Ng, = h-a/(G cp) 0.0356 0,0658 ‘ -—
£ 0.86 | 1.6 -
A 13.7 25.8 -
n 0.L94L 0929 —
K 0.21 0473 | -
N 0,137 . 0.137 rps
N 8422 8.22 - rpm_

From the relationship between the rate of flow m and the mmss
velocity G, it is found that A, and A sre 12.9 and L5.8 £t2, re-
spectively. The area allowed for the seals being about 6 per cent of the
total area, the pitch surface of the drum has a total area of 62.5 ft°
and the volume of the drum is 21.L ft> « %WAssuming that the length oA
of the drum is 1.5 times its pitch diameter D;, one finds that
Dy = 3.65 ft and | = 5.L46 ft. The matrix screens would weigh about

one ton.

5-12 Final Remarks
It has been noted that an assumption underlying the calculation pro-

cedure is that the pressure drop and the heat transfer correlations of
the selected mtrix material can be extended beyond the range of Johnson's
tests. This would require an experimental check. In particular, the
assumed friction factor on the cold side appears to be considerably lower
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than a true extrapolation of the data indicates, The sample calculation
could be improved by taking this difference into account.

The value 0.036 for the utilization factor is rather low. This
indicates that the carry-over losses could be reduced by lowering the
mtrix speed without seriously impairing the effectiveness of the cal-
culated mtrix or without having to increase the matrix length consider-
ably to retain the same effectiveness. In general, it is expected that a
regenerator could be foufnd to operate satisfactorily with a utilization
factor in the order of magnitude 0,3.

The influence of conduction along the x~direction of the matrix can
be calculated by means of the chart in Fig. 2-9. In the illustrative
exanple, the conductivity of the stainless steel is ks = 15 B/hr ft F,
and so (A/P) pax = 0+008. ‘Therefore, the influence of the conduction

in the x-direction is to decrease the effectiveness less than 1 per cent.

The designer may have to try a few matrix mterials before he is
satisfied that he has the regenerator of least weight and volume for
his application. Having found a matrix to satisfy the thermal require-
ments, the designer may proceed to the details of the mechanicel design.
Finally, he can return to his calculations of the thermal performance,
improving his estimates and predicting the performances at other speeds
and other loads. ‘
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Appendix A: INFLUENCE OF CURVATURE IN DRUM TYPE MATRICES

A-1 Generai Remarks
In this appendix it is shown that the performance of the drum type

regenerator can be obtained directly from the theory of the flat regenera-
tor (cf. Chapter 2)., The demonstration is based on the assumptions of
Section 2-1 and is carried out using the line of reasoning in Section 2~2.

A-2 Derivation of the Differential Equations
A drum type matrix of unit length along the axis is considered. The

angular speed is w . Heat balances are made on an element of space shown
in Fig. A-1. Since the mass velocity m" varies with the radius, it
will be convenient to employ the axial interstitial velocity u, because

u °*r is a constant by continuity. Also, the matrix velocity v is a

function of the radial'distance, namely, v= W e+ r,

It is sufficient to consider only one of the fluids; and. it mey be
supposed that its channel subtends an angle K ¢ 24 radians. The solid
terperature is t = t(r,@) and the fluid temperature © = &(r,@).

A-2,1 Thermnl Energy Conveyed by the Fluid

The energy transported per unit time by the fluid into the ele-
mnt of space is

qr=u€-(r6¢ol)PCp"9 (a-1)

A-2,2 Thermal Energy Conveyed by the Solid
Similarly, the thermel energy transported per unit time into the

element of space by the solid materiel by virtue of its enthalpy is

-

Q= wre(rel) mom ot (A-2)
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A-2.3 Thermal Energy in the Carry-Over
The thermal energy of the fluid carried over per unit time is

q¢,2=ewr°(p'8r'l)-cp09 (A-3)

A-2.l Balance of the Transported Thermal Energy
Applying the First Law of Thermodynamics to the elemental volume
of space and observing that no heat is stored,

d 3( )
ks ig1? 9,2 =0 - (A-L)

— Or +
or

Substituting from Eq. A-1l, =2, and -3 into Eq. A-li and observing that @ s

e, cp, and u°r are constants,
99_ " ot BO,__ -
uepcpar+c w%-r(:@wcpw_o (A-5)

A-2.5 Heat Exchange in the Elemental Volume of Space
The rate of change of the enthalpy of the matrix material is

equal to the rate of heat transferred by convection in the same space

element. Accordingly,

%(C"'wr-t-&r)bﬁ!:hsm-(O-t)-r5r6¢ (A-6)
or
G=Tm G-t ~ (a=T)

Eliminating 3t/3¢ from Eq. A-S and -7,

00 00
ue(j cpg;-#?@uocpa: hsS™ (¢ - 6) (A-8)
It is convenient to employ the rate of fluid flow per unit axial length,.

m':u-(K'Z'wr'(S) o (2-9)
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Then Eq. A-8 may be written,

2wKpBw 0 130 _ . hs" - -
S k- R -EEAL mie (&= ©) (8-20)

Equations A~7 and =10 are the basic differential equations governing the
termperature of the solid and the fluid in the drum type matrix.

A-2,6 The Differential Equations in Dimensionless Space Coordinates

New coordinates are introduced:

2 2
e = 20K + oyt (s-12)
and
r2 - I,
R TR 12

where subscript i refers to the inside radius of the drum. Then con-

sidering t = t(&, vl) and & = 0(Z, '\.)’ one can reduce Eq. A-7 and =10

to the simple forms obtained in discussing the flet matrix, naxriely,

ot

and

o0
a—a- =t - ) (A-1L)

A~3 Reduced Length and Reduced Period
The reduced length of the drum type matrix is
2

I'2 -rr

hSm 0 1

mte 2 (A-15)
P

N = 2xK

where r, is the outer radius of the drum. The reduced period is

1= hS"™ = 2wK

- (A-16)

WADC TR 55-13 100




The boundary conditions expressed in terms of A and N are the
same for the drum type regenerator as for the flat matrix. Therefore,
the solutions of the problem of the flet regenerator becomes directly
applicable to the solution of the problem of the drum type regenerator.

A=l Interpretaltion of the Modificaetions Caused by Curvature

If <t denotes the time that a point in the matrix takes to move an
angle @ from the instant it enters the fluid, then @ = wt and, em
ploying Eq. A-9, the definition of ul becomes

r
hS" 1l r i
N =g [T -3 G- r;.'>] (-17)
1
where u and u, eare the radial velocities at r and s reépectively.
ro
It can be shown that %(% - -u—l is the time required for a particle in

the fluid to move radially from r, to r. Thus it is shown that n
defined by Eq. A-12 has the same form as the ul for flat matrices de-
fined by Eq. 2-11.

Also, since 2wK/w represents the time that any point in the ma-
trix is exposed to the fluid, the expression for T in Eq. A-16 hes

essentially the same meaning as the expression for W in Eq. 2-19.

Regarding & , one may define a mean value of the mass velocity de-

noted by m;r'l r besed on the arithmetic mean of the facial areas at
3>
redii r. and r:

r+r,
-— " ° L3 -
m! mm,r 2 3 K (A-18)
Then
h S™ '
g = ) C (r - ri) (A-19)
m,r p

Thus, it is shown that & defined by Eq. A-11 has essentially the same
form as the & for flet matrices defined by Eq. 2-10.
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In particular,

hSlll
A==g— (r_=-r,) (a-20)
m cp o) i
wher-e ml'r'1 is the mean facial mass velocity based on the areas at ry and
r. It follows that to apply the theory of the flat matrix to a drum re-

generator, the reduced length must be evaluated on the basis of the mass

velocity at the mean radius of the drum,
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Appendix B: WORK AND THERMAL EFFICIENCY OF AN ACTUAL
REGENERATIVE GAS TURBINE CYCLE

B-1 General Remerks ;
Expressions for evaluating the work and thermal efficiency of an actual

regenerative gas turbine cycle are derived in this appendix. It is assumed
that the working medium is a thermally perfect gas having constant specific
heats. The expressions are developed for ; pound of eir entering the
syster at Poing 1 in Fig. L-l. It is supposed that the compressor effici-
ency ch s the turbine efficiency N2 the regenerator effectiveness
Y\Reg’ the pressure ratio rp = p2/pl, the leakage fraction Am/m, and
the summation of the pressure losses (as well as their distribution)

> (Ap/p) are knomn,

By definition,

E :Ap_pz"p3+ph’p1 (1)
P P P
2 1
Ratios aq and a, ere defined:
| ! A '
. £2p 2
Py QIZ p (B-2)
and
Py=Pp
2 3 AE .
———p = 3
P, 2 Z P (B-3)
Hence,
A +a,=1 (B-L)

B-2 Eveluation of Temperatures T2?——T-h! and TA
It has been mentioned in the text that Points 2' and L' represent

the ideal end states of isentropic compression and expansion, respectively.

Therefore,
-1

T, =T er " (B-5)

WADC TR 55-13 104




and

apS=d
r - L.I*QIZ(p) L3 (3-6)
Pol-a,> (5

Temperatures T2 and Th are related to . T2 and Th' by the com-
pressor and turbine efficiencies: ' | :
k=1
r K '_1
Tpy=Ty <1 YRR (B~7)
Ne

and

1*‘112(—2)
Ty =T,41 — -1 (B-8)
L= 73 +'\tl:<p 1‘“22(32> J

Now, the regenerator's effectiveness by definition is, with reference
'tO Fig. b“‘l,

=TA'T2

VReg = -1, . (3-9)

Consequently, the intermediate temperature T 2’ that is, the temperature

of the cold air leaving the regenerator, may be expressed in terms of
I. and T

1 3¢

1- Q ' =1
TA=T1 Tg(ylc'l-r -1)

¢ x=-1
l+a Z(-—P—)
1
+ T, 1- L. (B~10)
3"Y Reg ¥ Melr 1. 22(_32)>

Having found T2, Th’ and T in terms of the given Quantities, one my

now calculate the heat added Q to the cycle and the net work W of the
¢eley, as shown below.
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B-3 Evaluation of the Heat Added to the Cycle
The heat input Q per pound of air entering the system at Point 1
is the heat required to raise the tenperature of (1- Q—-—) pound of the

air from Point A to Point 3. Hence, ' |

i

(3-11) .

B-li Net Work of the Cycle :
The net work of the cycle per pound of eair at Point 1 is the dif-

ference between the work done by the turbine, namely,
_ Am ¢ Am
=1 -0y =h) =@ -FH e (1;-T)  (8-12)

and the work done by the compressor, nanmely,

wc‘ =hy-h =c (T,-T) (B~13)
Hence, é
W= [(1 -8By ) - (r, - Tl)] ' (B-1L) :

B~5 Maximum Thermal Efficiency C

In general the thermel efficiency of the cycle is

"th = % (B-15)

o e g,

From the precedlng sections of this appendix it is evident that rl th de-

ends u T
p pont 215 %35 Moo Mg "Reg? Qg9 Z(AP/P): Am/m, and rp' For
any practical values of the first eight quantities, which must be given

or calculated, there is a value of the pressure ratio r_ which gives

the maximum therml efficiency "th (cf. Fig, 1-3). This value may
,w{

be found by the elementary processes of maximizing 'lth by means of the
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differential calculus. Or, it can be found more simply by plotting Nt
as a function of rp.

The maximum work of the cycle per pound of air may be found in similar

nys [ 3 i
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